Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Python Machine Learning


Sebastian Raschka - 2015
    We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world

In the Beginning...Was the Command Line


Neal Stephenson - 1999
    And considering that the "one man" is Neal Stephenson, "the hacker Hemingway" (Newsweek) -- acclaimed novelist, pragmatist, seer, nerd-friendly philosopher, and nationally bestselling author of groundbreaking literary works (Snow Crash, Cryptonomicon, etc., etc.) -- the word is well worth hearing. Mostly well-reasoned examination and partial rant, Stephenson's In the Beginning... was the Command Line is a thoughtful, irreverent, hilarious treatise on the cyber-culture past and present; on operating system tyrannies and downloaded popular revolutions; on the Internet, Disney World, Big Bangs, not to mention the meaning of life itself.

Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again


Eric J. Topol - 2019
    The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard.Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

Big Data: Does Size Matter?


Timandra Harkness - 2016
    It can help us do things faster and more efficiently than ever before, from tracking wolves through Minnesota by GPS to predicting which crimes are likely to happen where. Mega data has led to scientific and social achievements that would have been impossible just a few years ago. But being too dazzled by the scale, the speed, and the geeky jargon can lead us astray. It's big, but it's not always clever.Timandra Harkness cuts through the hype to put data science into its real-life context using a wide range of stories, people, and places to reveal what is essentially a human science--demystifying big data, telling us where it comes from and what it can do. BIG DATA then asks the awkward questions: What are the unspoken assumptions underlying its methods? Are we being bamboozled by mega data's size, its speed, and its shiny technology?Nobody needs a degree in computer science to follow Harkness's exploration of what mega data can do for us--and what it can't or shouldn't. BIG DATA asks you to decide: Are you a data point, or a human being?

The Universal Computer: The Road from Leibniz to Turing


Martin D. Davis - 2000
    How can today's computers perform such a bewildering variety of tasks if computing is just glorified arithmetic? The answer, as Martin Davis lucidly illustrates, lies in the fact that computers are essentially engines of logic. Their hardware and software embody concepts developed over centuries by logicians such as Leibniz, Boole, and Godel, culminating in the amazing insights of Alan Turing. The Universal Computer traces the development of these concepts by exploring with captivating detail the lives and work of the geniuses who first formulated them. Readers will come away with a revelatory understanding of how and why computers work and how the algorithms within them came to be.

The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century


David Salsburg - 2001
    At a summer tea party in Cambridge, England, a guest states that tea poured into milk tastes different from milk poured into tea. Her notion is shouted down by the scientific minds of the group. But one man, Ronald Fisher, proposes to scientifically test the hypothesis. There is no better person to conduct such an experiment, for Fisher is a pioneer in the field of statistics.The Lady Tasting Tea spotlights not only Fisher's theories but also the revolutionary ideas of dozens of men and women which affect our modern everyday lives. Writing with verve and wit, David Salsburg traces breakthroughs ranging from the rise and fall of Karl Pearson's theories to the methods of quality control that rebuilt postwar Japan's economy, including a pivotal early study on the capacity of a small beer cask at the Guinness brewing factory. Brimming with intriguing tidbits and colorful characters, The Lady Tasting Tea salutes the spirit of those who dared to look at the world in a new way.

Concrete Mathematics: A Foundation for Computer Science


Ronald L. Graham - 1988
    "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."

Elastic: Flexible Thinking in a Time of Change


Leonard Mlodinow - 2018
    Out of the exploratory instincts that allowed our ancestors to prosper hundreds of thousands of years ago, humans developed a cognitive style that Mlodinow terms elastic thinking, a unique set of talents that include neophilia (an affinity for novelty), schizotypy (a tendency toward unusual perception), imagination and idea generation, and divergent and integrative thinking. These are the qualities that enabled innovators from Mary Shelley to Miles Davis, from the inventor of jumbo-sized popcorn to the creators of Pok'mon Go, to effect paradigm shifts in our culture and society. In our age of unprecedented technological innovation and social change, it is more important than ever to encourage these abilities and traits.How can we train our brains to be more comfortable when confronting change and more adept at innovation? How do our brains generate new ideas, and how can we nurture that process? Why can diversity and even discord be beneficial to our thought process? With his keen acumen and quick wit, Leonard Mlodinow gives us the essential tools to harness the power of elastic thinking in an endlessly dynamic world.Includes a Bonus PDF of Exercises

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Everything and More: A Compact History of Infinity


David Foster Wallace - 2003
    Now he brings his considerable talents to the history of one of math's most enduring puzzles: the seemingly paradoxical nature of infinity.Is infinity a valid mathematical property or a meaningless abstraction? The nineteenth-century mathematical genius Georg Cantor's answer to this question not only surprised him but also shook the very foundations upon which math had been built. Cantor's counterintuitive discovery of a progression of larger and larger infinities created controversy in his time and may have hastened his mental breakdown, but it also helped lead to the development of set theory, analytic philosophy, and even computer technology.Smart, challenging, and thoroughly rewarding, Wallace's tour de force brings immediate and high-profile recognition to the bizarre and fascinating world of higher mathematics.

Cybernetics: or the Control and Communication in the Animal and the Machine


Norbert Wiener - 1948
    It is a ‘ must’ book for those in every branch of science . . . in addition, economists, politicians, statesmen, and businessmen cannot afford to overlook cybernetics and its tremendous, even terrifying implications. "It is a beautifully written book, lucid, direct, and despite its complexity, as readable by the layman as the trained scientist." -- John B. Thurston, "The Saturday Review of Literature" Acclaimed one of the "seminal books . . . comparable in ultimate importance to . . . Galileo or Malthus or Rousseau or Mill," "Cybernetics" was judged by twenty-seven historians, economists, educators, and philosophers to be one of those books published during the "past four decades", which may have a substantial impact on public thought and action in the years ahead." -- Saturday Review

Machine Learning


Tom M. Mitchell - 1986
    Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.

The Soul of a New Machine


Tracy Kidder - 1981
    Tracy Kidder got a preview of this world in the late 1970s when he observed the engineers of Data General design and build a new 32-bit minicomputer in just one year. His thoughtful, prescient book, The Soul of a New Machine, tells stories of 35-year-old "veteran" engineers hiring recent college graduates and encouraging them to work harder and faster on complex and difficult projects, exploiting the youngsters' ignorance of normal scheduling processes while engendering a new kind of work ethic.These days, we are used to the "total commitment" philosophy of managing technical creation, but Kidder was surprised and even a little alarmed at the obsessions and compulsions he found. From in-house political struggles to workers being permitted to tease management to marathon 24-hour work sessions, The Soul of a New Machine explores concepts that already seem familiar, even old-hat, less than 20 years later. Kidder plainly admires his subjects; while he admits to hopeless confusion about their work, he finds their dedication heroic. The reader wonders, though, what will become of it all, now and in the future. —Rob Lightner