Introduction to Java Programming: Comprehensive Version


Y. Daniel Liang - 1999
    Daniel Liang teaches concepts of problem-solving and object-oriented programming using a fundamentals-first approach. Beginning programmers learn critical problem-solving techniques then move on to grasp the key concepts of object-oriented and GUI programming using Java 5. Students start with the essential problem-solving and programming concepts (control statements, methods, and arrays), are then introduced to object-oriented programming, graphical user interface (GUI), and applets, and finally to exception handling, I/O, data structures, and other advanced subjects. Liang uses small, simple, and stimulating examples to demonstrate concepts and techniques while longer examples are presented in case studies with overall discussions and thorough line-by-line explanations. Students can now write short, interesting, graphical game programs starting from Chapter 2! reinforcing key concepts with objectives lists, introduction and chapter overviews, easy to follow examples, chapter summaries, review questions, programming exercises, interactive self-test. Students receive solutions to even-numbered programming exercises, source code for the examples in the book, online self assessment (w/over 1000 multiple-choice questions) and ONLINE homework through GRADIANCE, the industries most advanced online homework application. Instructors are offered the most extensive library of support materials available including interactive and animated slides, TestGen (w/over 2000 multiple-choice questions), solutions to all programming exercises, sample exams and supplemental exercises. Available in two versions, the Fundamentals First edition (chapters 1-19) and the Comprehensive version (chapters 1-36).

Python Data Science Handbook: Tools and Techniques for Developers


Jake Vanderplas - 2016
    Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Cryptography Engineering: Design Principles and Practical Applications


Niels Ferguson - 2010
    Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography Shows you how to build cryptography into products from the start Examines updates and changes to cryptography Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.

Hackers: Heroes of the Computer Revolution


Steven Levy - 1984
    That was before one pioneering work documented the underground computer revolution that was about to change our world forever. With groundbreaking profiles of Bill Gates, Steve Wozniak, MIT's Tech Model Railroad Club, and more, Steven Levy's Hackers brilliantly captured a seminal moment when the risk-takers and explorers were poised to conquer twentieth-century America's last great frontier. And in the Internet age, the hacker ethic-first espoused here-is alive and well.

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Peopleware: Productive Projects and Teams


Tom DeMarco - 1987
    The answers aren't easy -- just incredibly successful.

Security Engineering: A Guide to Building Dependable Distributed Systems


Ross J. Anderson - 2008
    Spammers, virus writers, phishermen, money launderers, and spies now trade busily with each other in a lively online criminal economy and as they specialize, they get better. In this indispensable, fully updated guide, Ross Anderson reveals how to build systems that stay dependable whether faced with error or malice. Here's straight talk on critical topics such as technical engineering basics, types of attack, specialized protection mechanisms, security psychology, policy, and more.

The Art of Multiprocessor Programming


Maurice Herlihy - 2008
    To leverage the performance and power of multiprocessor programming, also known as multicore programming, programmers need to learn the new principles, algorithms, and tools.The book will be of immediate use to programmers working with the new architectures. For example, the next generation of computer game consoles will all be multiprocessor-based, and the game industry is currently struggling to understand how to address the programming challenges presented by these machines. This change in the industry is so fundamental that it is certain to require a significant response by universities, and courses on multicore programming will become a staple of computer science curriculums.This book includes fully-developed Java examples detailing data structures, synchronization techniques, transactional memory, and more.Students in multiprocessor and multicore programming courses and engineers working with multiprocessor and multicore systems will find this book quite useful.

How Google Tests Software


James A. Whittaker - 2012
    Legendary testing expert James Whittaker, until recently a Google testing leader, and two top Google experts reveal exactly how Google tests software, offering brand-new best practices you can use even if you're not quite Google's size...yet! Breakthrough Techniques You Can Actually Use Discover 100% practical, amazingly scalable techniques for analyzing risk and planning tests...thinking like real users...implementing exploratory, black box, white box, and acceptance testing...getting usable feedback...tracking issues...choosing and creating tools...testing "Docs & Mocks," interfaces, classes, modules, libraries, binaries, services, and infrastructure...reviewing code and refactoring...using test hooks, presubmit scripts, queues, continuous builds, and more. With these techniques, you can transform testing from a bottleneck into an accelerator-and make your whole organization more productive!

Python Tricks: A Buffet of Awesome Python Features


Dan Bader - 2017
    Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today. Who Should Read This Book: If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review. If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2. If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista. If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge. What Python Developers Say About The Book: "I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.

Docker in Action


Jeff Nickoloff - 2015
    Create a tiny virtual environment, called a container, for your application that includes only its particular set of dependencies. The Docker engine accounts for, manages, and builds these containers through functionality provided by the host operating system. Software running inside containers share the Linux OS and other resources, such as libraries, making their footprints radically smaller, and the containerized applications are easy to install, manage, and remove. Developers can package their applications without worrying about environment-specific deployment concerns, and the operations team gets cleaner, more efficient systems across the board. Better still, Docker is free and open source.Docker in Action teaches readers how to create, deploy, and manage applications hosted in Docker containers. The book starts with a clear explanation of the Docker model of virtualization, comparing this approach to the traditional hypervisor model. Developers will learn how to package applications in containers, including specific techniques for testing and distributing applications via Docker Hub and other registries. Readers will learn how to take advantage of the Linux OS features that Docker uses to run programs securely, and how to manage shared resources. Using carefully-designed examples, the book teaches you how to orchestrate containers and applications from installation to removal. Along the way, you'll learn techniques for using Docker on systems ranging from your personal dev-and-test machine to full-scale cloud deployments.

C++ Standard Library: A Tutorial and Reference


Nicolai M. Josuttis - 1999
    The library is not self-explanatory or fully consistent, and there are still some traps for the unwary. But the advantages far outweigh the problems, especially if you've got an expert book like Nicolai Josuttis' C++ Standard Library to help you. Josuttis starts with an overview of the standard library, and its key interrelationships with the core language. He presents detailed coverage of the STL, the most powerful, complex, and exciting part of the library; then covers special containers, strings, numeric classes, and internationalization; and helps you get more out of a component you're probably already using: the IOStream library. Every component description includes purpose, design, code examples, practical scenarios, pitfalls, and in most cases, reference sources. Whether you need a tutorial or reference, this book delivers the goods.— (Bill Camarda, bn.com, editor)

Professor Frisby's Mostly Adequate Guide to Functional Programming


Brian Lonsdorf
    We'll use the world's most popular functional programming language: JavaScript. Some may feel this is a poor choice as it's against the grain of the current culture which, at the moment, feels predominately imperative. However, I believe it is the best way to learn FP for several reasons:You likely use it every day at work.This makes it possible to practice and apply your acquired knowledge each day on real world programs rather than pet projects on nights and weekends in an esoteric FP language.We don't have to learn everything up front to start writing programs.In a pure functional language, you cannot log a variable or read a DOM node without using monads. Here we can cheat a little as we learn to purify our codebase. It's also easier to get started in this language since it's mixed paradigm and you can fall back on your current practices while there are gaps in your knowledge.The language is fully capable of writing top notch functional code.We have all the features we need to mimic a language like Scala or Haskell with the help of a tiny library or two. Object-oriented programming currently dominates the industry, but it's clearly awkward in JavaScript. It's akin to camping off of a highway or tap dancing in galoshes. We have to bind all over the place lest this change out from under us, we don't have classes[^Yet], we have various work arounds for the quirky behavior when the new keyword is forgotten, private members are only available via closures. To a lot of us, FP feels more natural anyways.That said, typed functional languages will, without a doubt, be the best place to code in the style presented by this book. JavaScript will be our means of learning a paradigm, where you apply it is up to you. Luckily, the interfaces are mathematical and, as such, ubiquitous. You'll find yourself at home with swiftz, scalaz, haskell, purescript, and other mathematically inclined environments.

But How Do It Know? - The Basic Principles of Computers for Everyone


J. Clark Scott - 2009
    Its humorous title begins with the punch line of a classic joke about someone who is baffled by technology. It was written by a 40-year computer veteran who wants to take the mystery out of computers and allow everyone to gain a true understanding of exactly what computers are, and also what they are not. Years of writing, diagramming, piloting and editing have culminated in one easy to read volume that contains all of the basic principles of computers written so that everyone can understand them. There used to be only two types of book that delved into the insides of computers. The simple ones point out the major parts and describe their functions in broad general terms. Computer Science textbooks eventually tell the whole story, but along the way, they include every detail that an engineer could conceivably ever need to know. Like Momma Bear's porridge, But How Do It Know? is just right, but it is much more than just a happy medium. For the first time, this book thoroughly demonstrates each of the basic principles that have been used in every computer ever built, while at the same time showing the integral role that codes play in everything that computers are able to do. It cuts through all of the electronics and mathematics, and gets right to practical matters. Here is a simple part, see what it does. Connect a few of these together and you get a new part that does another simple thing. After just a few iterations of connecting up simple parts - voilà! - it's a computer. And it is much simpler than anyone ever imagined. But How Do It Know? really explains how computers work. They are far simpler than anyone has ever permitted you to believe. It contains everything you need to know, and nothing you don't need to know. No technical background of any kind is required. The basic principles of computers have not changed one iota since they were invented in the mid 20th century. "Since the day I learned how computers work, it always felt like I knew a giant secret, but couldn't tell anyone," says the author. Now he's taken the time to explain it in such a manner that anyone can have that same moment of enlightenment and thereafter see computers in an entirely new light.