Scala in Depth


Joshua Suereth - 2012
    By presenting the emerging best practices and designs from the Scala community, it guides you through dozens of powerful techniques example by example.About the BookScala is a powerful JVM language that blends the functional and OO programming models. You'll have no trouble getting introductions to Scala in books or online, but it's hard to find great examples and insights from experienced practitioners. You'll find them in Scala in Depth.There's little heavy-handed theory here—just dozens of crisp, practical techniques for coding in Scala. Written for readers who know Java, Scala, or another OO language.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.What's InsideConcise, expressive, and readable code style How to integrate Scala into your existing Java projects Scala's 2.8.0 collections API How to use actors for concurrent programming Mastering the Scala type system Scala's OO features—type member inheritance, multiple inheritance, and composition Functional concepts and patterns—immutability, applicative functors, and monads========================================​==========Table of ContentsScala—a blended language The core rules Modicum of style—coding conventions Utilizing object orientation Using implicits to write expressive code The type system Using implicits and types together Using the right collection Actors Integrating Scala with Java Patterns in functional programming

Introduction to Computation and Programming Using Python


John V. Guttag - 2013
    It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.

Haskell Programming From First Principles


Christopher Allen - 2015
    I've spent the last couple years actively teaching Haskell online and in person. Along the way, I started keeping notes on exercises and methods of teaching specific concepts and techniques in Haskell that eventually turned into my guide for learning haskell. That experience led me to work on this book.If you are new to programming entirely, Haskell is a great first language. You may have noticed the trend of "Functional Programming in [Imperative Language]" books and tutorials and learning Haskell gets right to the heart of what functional programming is. Languages such as Java are gradually adopting functional concepts, but most such languages were not designed to be functional languages, after all. We would not encourage you to learn Haskell as an only language, but because Haskell is a pure functional language, it is a fertile environment for mastering functional programming techniques. That way of thinking and problem solving is useful, no matter what other languages you might know or learn.Haskell is not a difficult language to use. Quite the opposite. I'm now able to tackle problems that I couldn't have tackled when I was primarily a Clojure, Common Lisp, or Python user. Haskell is difficult to teach effectively.

Being Geek: The Software Developer's Career Handbook


Michael Lopp - 2010
    Is it time to become a manager? Tell your boss he’s a jerk? Join that startup? Author Michael Lopp recalls his own make-or-break moments with Silicon Valley giants such as Apple, Netscape, and Symantec in Being Geek -- an insightful and entertaining book that will help you make better career decisions.With more than 40 standalone stories, Lopp walks through a complete job life cycle, starting with the job interview and ending with the realization that it might be time to find another gig. Many books teach you how to interview for a job or how to manage a project successfully, but only this book helps you handle the baffling circumstances you may encounter throughout your career.Decide what you're worth with the chapter on "The Business"Determine the nature of the miracle your CEO wants with "The Impossible"Give effective presentations with "How Not to Throw Up"Handle liars and people with devious agendas with "Managing Werewolves"Realize when you should be looking for a new gig with "The Itch"

97 Things Every Software Architect Should Know: Collective Wisdom from the Experts


Richard Monson-Haefel - 2009
    More than four dozen architects -- including Neal Ford, Michael Nygard, and Bill de hOra -- offer advice for communicating with stakeholders, eliminating complexity, empowering developers, and many more practical lessons they've learned from years of experience. Among the 97 principles in this book, you'll find useful advice such as:Don't Put Your Resume Ahead of the Requirements (Nitin Borwankar) Chances Are, Your Biggest Problem Isn't Technical (Mark Ramm) Communication Is King; Clarity and Leadership, Its Humble Servants (Mark Richards) Simplicity Before Generality, Use Before Reuse (Kevlin Henney) For the End User, the Interface Is the System (Vinayak Hegde) It's Never Too Early to Think About Performance (Rebecca Parsons) To be successful as a software architect, you need to master both business and technology. This book tells you what top software architects think is important and how they approach a project. If you want to enhance your career, 97 Things Every Software Architect Should Know is essential reading.

Python Machine Learning


Sebastian Raschka - 2015
    We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world

Java Generics and Collections: Speed Up the Java Development Process


Maurice Naftalin - 2006
    Generics and the greatly expanded collection libraries have tremendously increased the power of Java 5 and Java 6. But they have also confused many developers who haven't known how to take advantage of these new features.Java Generics and Collections covers everything from the most basic uses of generics to the strangest corner cases. It teaches you everything you need to know about the collections libraries, so you'll always know which collection is appropriate for any given task, and how to use it.Topics covered include:• Fundamentals of generics: type parameters and generic methods• Other new features: boxing and unboxing, foreach loops, varargs• Subtyping and wildcards• Evolution not revolution: generic libraries with legacy clients and generic clients with legacy libraries• Generics and reflection• Design patterns for generics• Sets, Queues, Lists, Maps, and their implementations• Concurrent programming and thread safety with collections• Performance implications of different collectionsGenerics and the new collection libraries they inspired take Java to a new level. If you want to take your software development practice to a new level, this book is essential reading.Philip Wadler is Professor of Theoretical Computer Science at the University of Edinburgh, where his research focuses on the design of programming languages. He is a co-designer of GJ, work that became the basis for generics in Sun's Java 5.0.Maurice Naftalin is Technical Director at Morningside Light Ltd., a software consultancy in the United Kingdom. He has most recently served as an architect and mentor at NSB Retail Systems plc, and as the leader of the client development team of a major UK government social service system."A brilliant exposition of generics. By far the best book on the topic, it provides a crystal clear tutorial that starts with the basics and ends leaving the reader with a deep understanding of both the use and design of generics." Gilad Bracha, Java Generics Lead, Sun Microsystems

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

RESTful Web Services


Leonard Richardson - 2007
    But can you also build web sites that are usable by machines? That's where the future lies, and that's what RESTful Web Services shows you how to do. The World Wide Web is the most popular distributed application in history, and Web services and mashups have turned it into a powerful distributed computing platform. But today's web service technologies have lost sight of the simplicity that made the Web successful. They don't work like the Web, and they're missing out on its advantages. This book puts the "Web" back into web services. It shows how you can connect to the programmable web with the technologies you already use every day. The key is REST, the architectural style that drives the Web. This book:Emphasizes the power of basic Web technologies -- the HTTP application protocol, the URI naming standard, and the XML markup language Introduces the Resource-Oriented Architecture (ROA), a common-sense set of rules for designing RESTful web services Shows how a RESTful design is simpler, more versatile, and more scalable than a design based on Remote Procedure Calls (RPC) Includes real-world examples of RESTful web services, like Amazon's Simple Storage Service and the Atom Publishing Protocol Discusses web service clients for popular programming languages Shows how to implement RESTful services in three popular frameworks -- Ruby on Rails, Restlet (for Java), and Django (for Python) Focuses on practical issues: how to design and implement RESTful web services and clients This is the first book that applies the REST design philosophy to real web services. It sets down the best practices you need to make your design a success, and the techniques you need to turn your design into working code. You can harness the power of the Web for programmable applications: you just have to work with the Web instead of against it. This book shows you how.

Pearls of Functional Algorithm Design


Richard S. Bird - 2010
    These 30 short chapters each deal with a particular programming problem drawn from sources as diverse as games and puzzles, intriguing combinatorial tasks, and more familiar areas such as data compression and string matching. Each pearl starts with the statement of the problem expressed using the functional programming language Haskell, a powerful yet succinct language for capturing algorithmic ideas clearly and simply. The novel aspect of the book is that each solution is calculated from an initial formulation of the problem in Haskell by appealing to the laws of functional programming. Pearls of Functional Algorithm Design will appeal to the aspiring functional programmer, students and teachers interested in the principles of algorithm design, and anyone seeking to master the techniques of reasoning about programs in an equational style.

Programming Clojure


Stuart Halloway - 2009
    Clojure's clean, careful design lets you write programs that get right to the essence of a problem, without a lot of clutter and ceremony. Clojure is Lisp reloaded. Clojure has the power inherent in Lisp, but is not constrained by the history of Lisp. Clojure is a functional language. Data structures are immutable, and functions tend to be side-effect free. This makes it easier to write correct programs, and to compose large programs from smaller ones. Clojure is concurrent. Rather than error-prone locking, Clojure provides software transactional memory. Clojure embraces Java. Calling from Clojure to Java is direct, and goes through no translation layer. Clojure is fast. Wherever you need it, you can get the exact same performance that you could get from hand-written Java code. Many other languages offer some of these features, but the combination of them all makes Clojure sparkle. Programming Clojure shows you why these features are so important, and how you can use Clojure to build powerful programs quickly.

Systems Performance: Enterprise and the Cloud


Brendan Gregg - 2013
    Now, internationally renowned performance expert Brendan Gregg has brought together proven methodologies, tools, and metrics for analyzing and tuning even the most complex environments. Systems Performance: Enterprise and the Cloud focuses on Linux(R) and Unix(R) performance, while illuminating performance issues that are relevant to all operating systems. You'll gain deep insight into how systems work and perform, and learn methodologies for analyzing and improving system and application performance. Gregg presents examples from bare-metal systems and virtualized cloud tenants running Linux-based Ubuntu(R), Fedora(R), CentOS, and the illumos-based Joyent(R) SmartOS(TM) and OmniTI OmniOS(R). He systematically covers modern systems performance, including the "traditional" analysis of CPUs, memory, disks, and networks, and new areas including cloud computing and dynamic tracing. This book also helps you identify and fix the "unknown unknowns" of complex performance: bottlenecks that emerge from elements and interactions you were not aware of. The text concludes with a detailed case study, showing how a real cloud customer issue was analyzed from start to finish. Coverage includes - Modern performance analysis and tuning: terminology, concepts, models, methods, and techniques - Dynamic tracing techniques and tools, including examples of DTrace, SystemTap, and perf - Kernel internals: uncovering what the OS is doing - Using system observability tools, interfaces, and frameworks - Understanding and monitoring application performance - Optimizing CPUs: processors, cores, hardware threads, caches, interconnects, and kernel scheduling - Memory optimization: virtual memory, paging, swapping, memory architectures, busses, address spaces, and allocators - File system I/O, including caching - Storage devices/controllers, disk I/O workloads, RAID, and kernel I/O - Network-related performance issues: protocols, sockets, interfaces, and physical connections - Performance implications of OS and hardware-based virtualization, and new issues encountered with cloud computing - Benchmarking: getting accurate results and avoiding common mistakes This guide is indispensable for anyone who operates enterprise or cloud environments: system, network, database, and web admins; developers; and other professionals. For students and others new to optimization, it also provides exercises reflecting Gregg's extensive instructional experience.

Dive Into Python


Mark Pilgrim - 2004
    because the language seems like a good way to accomplish programming tasks that don't require the low-level bit handling power of C.-- Richard Bejtlich, TaoSecurityPython is a new and innovative scripting language. It is set to replace Perl as the programming language of choice for shell scripters, and for serious application developers who want a feature-rich, yet simple language to deploy their products.Dive Into Python is a hands-on guide to the Python language. Each chapter starts with a real, complete code sample, proceeds to pick it apart and explain the pieces, and then puts it all back together in a summary at the end.This is the perfect resource for you if you like to jump into languages fast and get going right away. If you're just starting to learn Python, first pick up a copy of Magnus Lie Hetland's Practical Python.

The Tangled Web: A Guide to Securing Modern Web Applications


Michal Zalewski - 2011
    Every piece of the web application stack, from HTTP requests to browser-side scripts, comes with important yet subtle security consequences. To keep users safe, it is essential for developers to confidently navigate this landscape.In The Tangled Web, Michal Zalewski, one of the world's top browser security experts, offers a compelling narrative that explains exactly how browsers work and why they're fundamentally insecure. Rather than dispense simplistic advice on vulnerabilities, Zalewski examines the entire browser security model, revealing weak points and providing crucial information for shoring up web application security. You'll learn how to:Perform common but surprisingly complex tasks such as URL parsing and HTML sanitization Use modern security features like Strict Transport Security, Content Security Policy, and Cross-Origin Resource Sharing Leverage many variants of the same-origin policy to safely compartmentalize complex web applications and protect user credentials in case of XSS bugs Build mashups and embed gadgets without getting stung by the tricky frame navigation policy Embed or host user-supplied content without running into the trap of content sniffing For quick reference, "Security Engineering Cheat Sheets" at the end of each chapter offer ready solutions to problems you're most likely to encounter. With coverage extending as far as planned HTML5 features, The Tangled Web will help you create secure web applications that stand the test of time.

Software Architecture in Practice


Len Bass - 2003
    Distinct from the details of implementation, algorithm, and data representation, an architecture holds the key to achieving system quality, is a reusable asset that can be applied to subsequent systems, and is crucial to a software organization's business strategy.Drawing on their own extensive experience, the authors cover the essential technical topics for designing, specifying, and validating a system. They also emphasize the importance of the business context in which large systems are designed. Their aim is to present software architecture in a real-world setting, reflecting both the opportunities and constraints that companies encounter. To that end, case studies that describe successful architectures illustrate key points of both technical and organizational discussions.Topics new to this edition include: Architecture design and analysis, including the Architecture Tradeoff Analysis Method (ATAM) Capturing quality requirements and achieving them through quality scenarios and tactics Using architecture reconstruction to recover undocumented architectures Documenting architectures using the Unified Modeling Language (UML) New case studies, including Web-based examples and a wireless Enterprise JavaBeans™ (EJB) system designed to support wearable computers The financial aspects of architectures, including use of the Cost Benefit Analysis Method (CBAM) to make decisions If you design, develop, or manage the building of large software systems (or plan to do so), or if you are interested in acquiring such systems for your corporation or government agency, use Software Architecture in Practice, Second Edition, to get up to speed on the current state of software architecture.