Book picks similar to
The Little Book of Mathematical Principles, Theories, & Things by Robert Solomon
reference
math
non-fiction
nonfiction
The New Penguin History of The World
J.M. Roberts - 1976
Completely updated and revised by preeminent historian J. M. Roberts, this volume features ninety up-to-date maps, new sections, and extremely well-written and accessible articles throughout. Truly global and comprehensive, it succeeds in conveying the staggering diversity of the human experience across a vast range of climates and conditions. This is the one book for anyone interested in the variety and grandeur of history’s march.
The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom
Graham Farmelo - 2009
He was one of the leading pioneers of the greatest revolution in twentieth-century science: quantum mechanics. The youngest theoretician ever to win the Nobel Prize for Physics, he was also pathologically reticent, strangely literal-minded and legendarily unable to communicate or empathize. Through his greatest period of productivity, his postcards home contained only remarks about the weather.Based on a previously undiscovered archive of family papers, Graham Farmelo celebrates Dirac's massive scientific achievement while drawing a compassionate portrait of his life and work. Farmelo shows a man who, while hopelessly socially inept, could manage to love and sustain close friendship.The Strangest Man is an extraordinary and moving human story, as well as a study of one of the most exciting times in scientific history.'A wonderful book . . . Moving, sometimes comic, sometimes infinitely sad, and goes to the roots of what we mean by truth in science.' Lord Waldegrave, Daily Telegraph
Elementary Number Theory
David M. Burton - 1976
It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.
Computer Age Statistical Inference: Algorithms, Evidence, and Data Science
Bradley Efron - 2016
'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
The Fractal Geometry of Nature
Benoît B. Mandelbrot - 1977
The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.
How Math Explains the World: A Guide to the Power of Numbers, from Car Repair to Modern Physics
James D. Stein - 2008
In the four main sections of the book, Stein tells the stories of the mathematical thinkers who discerned some of the most fundamental aspects of our universe. From their successes and failures, delusions, and even duels, the trajectories of their innovations—and their impact on society—are traced in this fascinating narrative. Quantum mechanics, space-time, chaos theory and the workings of complex systems, and the impossibility of a "perfect" democracy are all here. Stein's book is both mind-bending and practical, as he explains the best way for a salesman to plan a trip, examines why any thought you could have is imbedded in the number π , and—perhaps most importantly—answers one of the modern world's toughest questions: why the garage can never get your car repaired on time.Friendly, entertaining, and fun, How Math Explains the World is the first book by one of California's most popular math teachers, a veteran of both "math for poets" and Princeton's Institute for Advanced Studies. And it's perfect for any reader wanting to know how math makes both science and the world tick.
Philosophy: A Text with Readings
Manuel G. Velasquez - 1988
Author Manuel Velasquez combines clear prose and primary source readings to take you on a meaningful exploration of a range of philosophical topics, such as human nature, feminist theory, diversity, and aesthetics. Plus, the text's carefully crafted built-in learning aids will help you succeed in your course.
Introduction to Algorithms
Thomas H. Cormen - 1989
Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.
Introduction to Probability Models
Sheldon M. Ross - 1972
This updated edition of Ross's classic bestseller provides an introduction to elementary probability theory and stochastic processes, and shows how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.This book now contains a new section on compound random variables that can be used to establish a recursive formula for computing probability mass functions for a variety of common compounding distributions; a new section on hiddden Markov chains, including the forward and backward approaches for computing the joint probability mass function of the signals, as well as the Viterbi algorithm for determining the most likely sequence of states; and a simplified approach for analyzing nonhomogeneous Poisson processes. There are also additional results on queues relating to the conditional distribution of the number found by an M/M/1 arrival who spends a time t in the system; inspection paradox for M/M/1 queues; and M/G/1 queue with server breakdown. Furthermore, the book includes new examples and exercises, along with compulsory material for new Exam 3 of the Society of Actuaries.This book is essential reading for professionals and students in actuarial science, engineering, operations research, and other fields in applied probability.
Complexity: The Emerging Science at the Edge of Order and Chaos
M. Mitchell Waldrop - 1992
The science of complexity studies how single elements, such as a species or a stock, spontaneously organize into complicated structures like ecosystems and economies; stars become galaxies, and snowflakes avalanches almost as if these systems were obeying a hidden yearning for order. Drawing from diverse fields, scientific luminaries such as Nobel Laureates Murray Gell-Mann and Kenneth Arrow are studying complexity at a think tank called The Santa Fe Institute. The revolutionary new discoveries researchers have made there could change the face of every science from biology to cosmology to economics. M. Mitchell Waldrop's groundbreaking bestseller takes readers into the hearts and minds of these scientists to tell the story behind this scientific revolution as it unfolds.
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
How to Think Like a Mathematician
Kevin Houston - 2009
Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.
Abstract Algebra
I.N. Herstein - 1986
Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.
Linear Algebra Done Right
Sheldon Axler - 1995
The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.