Book picks similar to
Complex Analysis in One Variable by Raghavan Narasimhan
complex-analysis
matfysstat
mathematics
shelved
A Concise History of Mathematics
Dirk Jan Struik - 1948
Students, researchers, historians, specialists — in short, everyone with an interest in mathematics — will find it engrossing and stimulating.Beginning with the ancient Near East, the author traces the ideas and techniques developed in Egypt, Babylonia, China, and Arabia, looking into such manuscripts as the Egyptian Papyrus Rhind, the Ten Classics of China, and the Siddhantas of India. He considers Greek and Roman developments from their beginnings in Ionian rationalism to the fall of Constantinople; covers medieval European ideas and Renaissance trends; analyzes 17th- and 18th-century contributions; and offers an illuminating exposition of 19th century concepts. Every important figure in mathematical history is dealt with — Euclid, Archimedes, Diophantus, Omar Khayyam, Boethius, Fermat, Pascal, Newton, Leibniz, Fourier, Gauss, Riemann, Cantor, and many others.For this latest edition, Dr. Struik has both revised and updated the existing text, and also added a new chapter on the mathematics of the first half of the 20th century. Concise coverage is given to set theory, the influence of relativity and quantum theory, tensor calculus, the Lebesgue integral, the calculus of variations, and other important ideas and concepts. The book concludes with the beginnings of the computer era and the seminal work of von Neumann, Turing, Wiener, and others."The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature Magazine.
Computational Geometry: Algorithms and Applications
Mark de Berg - 1997
The focus is on algorithms and hence the book is well suited for students in computer science and engineering. Motivation is provided from the application areas: all solutions and techniques from computational geometry are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. For students this motivation will be especially welcome. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement. All the basic techniques and topics from computational geometry, as well as several more advanced topics, are covered. The book is largely self-contained and can be used for self-study by anyone with a basic background in algorithms. In the second edition, besides revisions to the first edition, a number of new exercises have been added.
Computers and Intractability: A Guide to the Theory of NP-Completeness
Michael R. Garey - 1979
Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.
The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics
Karl Sabbagh - 2002
They speak of it in awed terms and consider it to be an even more difficult problem than Fermat's last theorem, which was finally proven by Andrew Wiles in 1995.In The Riemann Hypothesis, acclaimed author Karl Sabbagh interviews some of the world's finest mathematicians who have spent their lives working on the problem--and whose approaches to meeting the challenges thrown up by the hypothesis are as diverse as their personalities.Wryly humorous, lively, accessible and comprehensive, The Riemann Hypothesis is a compelling exploration of the people who do math and the ideas that motivate them to the brink of obsession--and a profound meditation on the ultimate meaning of mathematics.
The Compleat Strategyst: Being a Primer on the Theory of Games of Strategy
J.D. Williams - 1965
D. Williams wrote this entertaining, witty introduction for the nonscientist, game theory was still a somewhat mysterious subject familiar to very few scientists beyond those researchers, like himself, working for the military. Now, over thirty years after its original publication as a Rand Corporation research study, his light-hearted though thoroughly effective primer is the recognized classic introduction to an increasingly applicable discipline. Used by amateurs, professionals, and students throughout the world in the classroom, on the job, and for personal amusement, the book has been through ten printings, and has been translated into at least five languages (including Russian and Japanese).Revised, updated, and available for the first time in an inexpensive paperback edition, The Compleat Strategyst is a highly entertaining text essential for anyone interested in this provocative and engaging area of modern mathematics. In fully illustrated chapters complete with everyday examples and word problems, Williams offers readers a working understanding of the possible methods for selecting strategies in a variety of situations, simple to complex. With just a basic understanding of arithmetic, anyone can grasp all necessary aspects of two-, three-, four-, and larger strategy games with two or more sets of inimical interests and a limitless array of zero-sum payoffs.As research and study continues not only in this new discipline but in the related areas of statistics, probability and behavioral science, understanding of games, decision making, and the development of strategies will be increasingly important. In the areas of economics, sociology, politics, and the military, game theory is sure to have an even wider impact. For students and amateurs fascinated by game theory's implications there is no better, immediately applicable, or more entertaining introduction to the subject than this engaging text by the late J. D. Williams, Professor of Mathematics at Princeton University and a member of the Research Council of The Rand Corporation.
Adventures of a Computational Explorer
Stephen Wolfram - 2019
In this lively book of essays, Stephen Wolfram takes the reader along on some of his most surprising and engaging intellectual adventures in science, technology, artificial intelligence and language design.
An Introduction to Non-Classical Logic
Graham Priest - 2001
Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
Math for Mystics: From the Fibonacci Sequence to Luna's Labyrinth to the Golden Section and Other Secrets of Sacred Geometry
Renna Shesso - 2007
Whether you were the king's court astrologer or a farmer marking the best time for planting, timekeeping and numbers really mattered. Mistake a numerical pattern of petals and you could be poisoned. Lose the rhythm of a sacred dance or the meter of a ritually told story and the intricately woven threads that hold life together were spoiled. Ignore the celestial clock of equinoxes and solstices, and you'd risk being caught short of food for the winter. Shesso's friendly tone and clear grasp of the information make the math "go down easy" in this marvelous book.BONUS: This book has over 100 illustrations! Click on the Google Preview link to get a glimpse.Excerpt from Math for Mystics: “It’s our collective malaise: Post-Traumatic Math Disorder.“Yet despite how we personally feel about mathematics, our distant ancestors willingly used numbers as pathways into the great patterns of Nature, avenues to understanding the Universe and their own place in it. Many ancient cultures had specific gods and goddesses they credited with inventing mathematical skills. With the aid of divine inspiration and assistance, humans nourished this numerical invention, continually pushing their skills and seeking greater clarity of expression. “Our starting point may seem like a Zero. But for now, before looking at numbers and math, let’s simply see it as a circle. No matter what our spiritual practice, we each live within the circle of creation, each within the circle—the cohesiveness—of our own form...” From John Michael Greer, Grand Archdruid, Ancient Order of Druids in America and author of The Druidry Handbook:“As thoughtful as it is readable, Renna Shesso’s Math for Mystics is the book I wish I had when I first started trying to make sense of the mathematics that underlie so much of modern magic and traditional occult lore. Not the least of its virtues is the way it makes magical number theory accessible even to those who think they don’t like or can’t handle math. It provides a first-rate introduction to a fairly neglected branch of magical lore.”
Origami Design Secrets: Mathematical Methods for an Ancient Art
Robert J. Lang - 2003
Lang, one of the worlds foremost origami artists and scientists, presents the never-before-described mathematical and geometric principles that allow anyone to design original origami, something once restricted to an elite few. From the theoretical underpinnings to detailed step-by-step folding sequences, this book takes a modern look at the centuries-old art of origami.
Poetry of the Universe
Robert Osserman - 1995
40 illustrations throughout.
Game Theory
Drew Fudenberg - 1991
The analytic material is accompanied by many applications, examples, and exercises. The theory of noncooperative games studies the behavior of agents in any situation where each agent's optimal choice may depend on a forecast of the opponents' choices. "Noncooperative" refers to choices that are based on the participant's perceived selfinterest. Although game theory has been applied to many fields, Fudenberg and Tirole focus on the kinds of game theory that have been most useful in the study of economic problems. They also include some applications to political science. The fourteen chapters are grouped in parts that cover static games of complete information, dynamic games of complete information, static games of incomplete information, dynamic games of incomplete information, and advanced topics.--mitpress.mit.edu
On Gravity: A Brief Tour of a Weighty Subject
Anthony Zee - 2018
From the months each of us spent suspended in the womb anticipating birth to the moments when we wait for sleep to transport us to other realities, we are always aware of gravity. In On Gravity, physicist A. Zee combines profound depth with incisive accessibility to take us on an original and compelling tour of Einstein's general theory of relativity.Inspired by Einstein's audacious suggestion that spacetime could ripple, Zee begins with the stunning discovery of gravity waves. He goes on to explain how gravity can be understood in comparison to other classical field theories, presents the idea of curved spacetime and the action principle, and explores cutting-edge topics, including black holes and Hawking radiation. Zee travels as far as the theory reaches, leaving us with tantalizing hints of the utterly unknown, from the intransigence of quantum gravity to the mysteries of dark matter and energy.Concise and precise, and infused with Zee's signature warmth and freshness of style, On Gravity opens a unique pathway to comprehending relativity and gaining deep insight into gravity, spacetime, and the workings of the universe.
The Pea and the Sun: A Mathematical Paradox
Leonard M. Wapner - 2005
Would you believe that these five pieces can be reassembled in such a fashion so as to create two apples equal in shape and size to the original? Would you believe that you could make something as large as the sun by breaking a pea into a finite number of pieces and putting it back together again? Neither did Leonard Wapner, author of The Pea and the Sun, when he was first introduced to the Banach-Tarski paradox, which asserts exactly such a notion. Written in an engaging style, The Pea and the Sun catalogues the people, events, and mathematics that contributed to the discovery of Banach and Tarski's magical paradox. Wapner makes one of the most interesting problems of advanced mathematics accessible to the non-mathematician.
Imagining the Tenth Dimension: A New Way of Thinking about Time and Space
Rob Bryanton - 2006
Ten dimensions? Most of us have barely gotten used to the idea that there are four.Using simple geometry and an easygoing writing style, author Rob Bryanton starts with the lower dimensions that we are all familiar with, then uses those concepts to build one layer upon another, ultimately arriving at a way of imagining the tenth dimension.Part scientific exploration, part philosophy, this unique book touches upon such diverse topics as dark matter, Feynman's "sum over paths", the quantum observer, and the soul. It is aimed at anyone interested in leading-edge theories about cosmology and the nature of reality, but it is not about mainstream physics. Rather, Imagining the Tenth Dimension is a mind-expanding exercise that could change the way you view this incredible universe in which we live.
Number Theory
George E. Andrews - 1994
In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..