Book picks similar to
Machine Learning for Humans by Vishal Maini
ai
computer-science
machine-learning
artificial-intelligence
The Google Resume: How to Prepare for a Career and Land a Job at Apple, Microsoft, Google, or Any Top Tech Company
Gayle Laakmann McDowell - 2011
Gayle Laakmann McDowell worked in Google Engineering for three years, where she served on the hiring committee and interviewed over 120 candidates. She interned for Microsoft and Apple, and interviewed with and received offers from ten tech firms. If you're a student, you'll learn what to study and how to prepare while in school, as well as what career paths to consider. If you're a job seeker, you'll get an edge on your competition by learning about hiring procedures and making yourself stand out from other candidates. Covers key concerns like what to major in, which extra-curriculars and other experiences look good, how to apply, how to design and tailor your resume, how to prepare for and excel in the interview, and much more Author was on Google's hiring committee; interned at Microsoft and Apple; has received job offers from more than 10 tech firms; and runs CareerCup.com, a site devoted to tech jobs Get the only comprehensive guide to working at some of America's most dynamic, innovative, and well-paying tech companies with The Google Resume.
Feature Engineering for Machine Learning
Alice Zheng - 2018
With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.
Algorithms to Live By: The Computer Science of Human Decisions
Brian Christian - 2016
What should we do, or leave undone, in a day or a lifetime? How much messiness should we accept? What balance of new activities and familiar favorites is the most fulfilling? These may seem like uniquely human quandaries, but they are not: computers, too, face the same constraints, so computer scientists have been grappling with their version of such issues for decades. And the solutions they've found have much to teach us.In a dazzlingly interdisciplinary work, acclaimed author Brian Christian and cognitive scientist Tom Griffiths show how the algorithms used by computers can also untangle very human questions. They explain how to have better hunches and when to leave things to chance, how to deal with overwhelming choices and how best to connect with others. From finding a spouse to finding a parking spot, from organizing one's inbox to understanding the workings of memory, Algorithms to Live By transforms the wisdom of computer science into strategies for human living.
How to Count (Programming for Mere Mortals, #1)
Steven Frank - 2011
unsigned numbers- Floating point and fixed point arithmeticThis short, easily understood book will quickly get you thinking like a programmer.
Working with UNIX Processes
Jesse Storimer - 2011
Want to impress your coworkers and write the fastest, most efficient, stable code you ever have? Don't reinvent the wheel. Reuse decades of research into battle-tested, highly optimized, and proven techniques available on any Unix system.This book will teach you what you need to know so that you can write your own servers, debug your entire stack when things go awry, and understand how things are working under the hood.http://www.jstorimer.com/products/wor...
Programming Groovy
Venkat Subramaniam - 2008
But recently, the industry has turned to dynamic languages for increased productivity and speed to market.Groovy is one of a new breed of dynamic languages that run on the Java platform. You can use these new languages on the JVM and intermix them with your existing Java code. You can leverage your Java investments while benefiting from advanced features including true Closures, Meta Programming, the ability to create internal DSLs, and a higher level of abstraction.If you're an experienced Java developer, Programming Groovy will help you learn the necessary fundamentals of programming in Groovy. You'll see how to use Groovy to do advanced programming including using Meta Programming, Builders, Unit Testing with Mock objects, processing XML, working with Databases and creating your own Domain-Specific Languages (DSLs).
Bayesian Reasoning and Machine Learning
David Barber - 2012
They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
Automate This: How Algorithms Came to Rule Our World
Christopher Steiner - 2012
It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected. In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge. The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans. The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What happens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others? Who knows—maybe there’s a bot learning to do your job this minute.
The Creativity Code: How AI Is Learning to Write, Paint and Think
Marcus du Sautoy - 2019
They can navigate more data than a doctor or lawyer and act with greater precision. For many years we’ve taken solace in the notion that they can’t create. But now that algorithms can learn and adapt, does the future of creativity belong to machines, too?It is hard to imagine a better guide to the bewildering world of artificial intelligence than Marcus du Sautoy, a celebrated Oxford mathematician whose work on symmetry in the ninth dimension has taken him to the vertiginous edge of mathematical understanding. In The Creativity Code he considers what machine learning means for the future of creativity. The Pollockizer can produce drip paintings in the style of Jackson Pollock, Botnik spins off fanciful (if improbable) scenes inspired by J. K. Rowling, and the music-composing algorithm Emmy managed to fool a panel of Bach experts. But do these programs just mimic, or do they have what it takes to create? Du Sautoy argues that to answer this question, we need to understand how the algorithms that drive them work―and this brings him back to his own subject of mathematics, with its puzzles, constraints, and enticing possibilities.While most recent books on AI focus on the future of work, The Creativity Code moves us to the forefront of creative new technologies and offers a more positive and unexpected vision of our future cohabitation with machines. It challenges us to reconsider what it means to be human―and to crack the creativity code.
Genetic Algorithms in Search, Optimization, and Machine Learning
David Edward Goldberg - 1989
Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs. No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required. 0201157675B07092001
Planning for Big Data
Edd Wilder-James - 2004
From creating new data-driven products through to increasing operational efficiency, big data has the potential to makeyour organization both more competitive and more innovative.As this emerging field transitions from the bleeding edge to enterprise infrastructure, it's vital to understand not only the technologies involved, but the organizational and cultural demands of being data-driven.Written by O'Reilly Radar's experts on big data, this anthology describes:- The broad industry changes heralded by the big data era- What big data is, what it means to your business, and how to start solving data problems- The software that makes up the Hadoop big data stack, and the major enterprise vendors' Hadoop solutions- The landscape of NoSQL databases and their relative merits- How visualization plays an important part in data work
Learn Java in One Day and Learn It Well: Java for Beginners with Hands-on Project
Jamie Chan - 2016
Learn Java Programming Fast with a unique Hands-On Project. Book 4 of the Learn Coding Fast Series. Covers Java 8. Have you always wanted to learn computer programming but are afraid it'll be too difficult for you? Or perhaps you know other programming languages but are interested in learning the Java language fast? This book is for you. You no longer have to waste your time and money trying to learn Java from boring books that are 600 pages long, expensive online courses or complicated Java tutorials that just leave you more confused and frustrated. What this book offers... Java for Beginners Complex concepts are broken down into simple steps to ensure that you can easily master the Java language even if you have never coded before. Carefully Chosen Java Examples Examples are carefully chosen to illustrate all concepts. In addition, the output for all examples are provided immediately so you do not have to wait till you have access to your computer to test the examples. Careful selection of topics Topics are carefully selected to give you a broad exposure to Java, while not overwhelming you with information overload. These topics include object-oriented programming concepts, error handling techniques, file handling techniques and more. In addition, new features in Java (such as lambda expressions and default methods etc) are also covered so that you are always up to date with the latest advancement in the Java language. Learn The Java Programming Language Fast Concepts are presented in a "to-the-point" style to cater to the busy individual. You no longer have to endure boring and lengthy Java textbooks that simply puts you to sleep. With this book, you can learn Java fast and start coding immediately. How is this book different... The best way to learn Java is by doing. This book includes a unique project at the end of the book that requires the application of all the concepts taught previously. Working through the project will not only give you an immense sense of achievement, it’ll also help you retain the knowledge and master the language. Are you ready to dip your toes into the exciting world of Java coding? This book is for you. Click the BUY button and download it now. What you'll learn: Introduction to Java - What is Java? - What software do you need to code Java programs? - How to install and run JDK and Netbeans? Data types and Operators - What are the eight primitive types in Java? - What are arrays and lists? - How to format Java strings - What is a primitive type vs reference type? - What are the common Java operators? Object Oriented Programming - What is object oriented programming? - How to write your own classes - What are fields, methods and constructors? - What is encapsulation, inheritance and polymorphism? - What is an abstract class and interface? Controlling the Flow of a Program - What are condition statements? - How to use control flow statements in Java - How to handle errors and exceptions - How to throw your own exception
Rebooting AI: Building Artificial Intelligence We Can Trust
Gary F. Marcus - 2019
Professors Gary Marcus and Ernest Davis have spent their careers at the forefront of AI research and have witnessed some of the greatest milestones in the field, but they argue that a computer winning in games like Jeopardy and go does not signal that we are on the doorstep of fully autonomous cars or superintelligent machines. The achievements in the field thus far have occurred in closed systems with fixed sets of rules. These approaches are too narrow to achieve genuine intelligence. The world we live in is wildly complex and open-ended. How can we bridge this gap? What will the consequences be when we do? Marcus and Davis show us what we need to first accomplish before we get there and argue that if we are wise along the way, we won't need to worry about a future of machine overlords. If we heed their advice, humanity can create an AI that we can trust in our homes, our cars, and our doctor's offices. Reboot provides a lucid, clear-eyed assessment of the current science and offers an inspiring vision of what we can achieve and how AI can make our lives better.
Two Scoops of Django 1.11: Best Practices for the Django Web Framework
Daniel Roy Greenfeld - 2017
We have put thousands of hours into the fourth edition of the book, writing and revising its material to include significant improvements and new material based on feedback from previous editions.
Machine Learning: An Algorithmic Perspective
Stephen Marsland - 2009
The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.Highlights a Range of Disciplines and ApplicationsDrawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge."