Book picks similar to
Artificial Cognitive Systems: A Primer by David Vernon


iq
artificial-intelligence
complex-systems
common-son

Rebooting AI: Building Artificial Intelligence We Can Trust


Gary F. Marcus - 2019
    Professors Gary Marcus and Ernest Davis have spent their careers at the forefront of AI research and have witnessed some of the greatest milestones in the field, but they argue that a computer winning in games like Jeopardy and go does not signal that we are on the doorstep of fully autonomous cars or superintelligent machines. The achievements in the field thus far have occurred in closed systems with fixed sets of rules. These approaches are too narrow to achieve genuine intelligence. The world we live in is wildly complex and open-ended. How can we bridge this gap? What will the consequences be when we do? Marcus and Davis show us what we need to first accomplish before we get there and argue that if we are wise along the way, we won't need to worry about a future of machine overlords. If we heed their advice, humanity can create an AI that we can trust in our homes, our cars, and our doctor's offices. Reboot provides a lucid, clear-eyed assessment of the current science and offers an inspiring vision of what we can achieve and how AI can make our lives better.

Metamagical Themas: Questing for the Essence of Mind and Pattern


Douglas R. Hofstadter - 1985
    Hofstadter's collection of quirky essays is unified by its primary concern: to examine the way people perceive and think.

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

Genes vs Cultures vs Consciousness: A Brief Story of Our Computational Minds


Andres Campero - 2019
    It touches on its evolutionary development, its algorithmic nature and its scientific history by bridging ideas across Neuroscience, Computer Science, Biotechnology, Evolutionary History, Cognitive Science, Political Philosophy, and Artificial Intelligence.Never before had there been nearly as many scientists, resources or productive research focused on these topics, and humanity has achieved some understanding and some clarification. With the speed of progress it is timely to communicate an overreaching perspective, this book puts an emphasis on conveying the essential questions and what we know about their answers in a simple, clear and exciting way.Humans, along with the first RNA molecules, the first life forms, the first brains, the first conscious animals, the first societies and the first artificial agents constitute an amazing and crucial development in a path of increasingly complex computational intelligence. And yet, we occupy a minuscule time period in the history of Earth, a history that has been written by Genes, by Cultures and by Consciousnesses. If we abandon our anthropomorphic bias it becomes obvious that Humans are not so special after all. We are an important but short and transitory step among many others in a bigger story. The story of our computational minds, which is ours but not only ours. What is the relationship between computation, cognition and everything else? What is life and how did it originate? What is the role of culture in human minds? What do we know about the algorithmic nature of the mind, can we engineer it? What is the computational explanation of consciousness? What are some possible future steps in the evolution of minds? The underlying thread is the computational nature of the Mind which results from the mixture of Genes, Cultures and Consciousness. While these three interact in complex ways, they are ultimately computational systems on their own which appeared at different stages of history and which follow their own selective processes operating at different time scales. As technology progresses, the distinction between the three components materializes and will be a key determinant of the future.Among the many topics covered are the origin of life, the concept of computation and its relation to Turing Machines, cultural evolution and the notion of a Selfish Meme, free will and determinism, moral relativity, the hard problem of consciousness, the different theories of concepts from the perspective of cognitive science, the current status of AI and Machine Learning including the symbolic vs sub-symbolic dichotomy, the contrast between logical reasoning and neural networks, and the recent history of Deep Learning, Geoffrey Hinton, DeepMind and its algorithm AlphaGo. It also develops on the history of science and looks into the possible future building on the work of authors like Daniel Dennett, Yuval Harari, Richard Dawkins, Francis Crick, George Church, David Chalmers, Susan Carey, Stanislas Dehaene, Robert Boyd, Joseph Henrich, Daniel Kahneman, Moran Cerf, Josh Tenenbaum, David Deutsch, Steven Pinker, Ray Kurzweil, John von Neumann, Herbert Simon and many more. Andres Campero is a researcher and PhD student at the Brain and Cognitive Sciences Department and at the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology (MIT).

Python for Data Analysis


Wes McKinney - 2011
    It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples

The Annotated Turing: A Guided Tour Through Alan Turing's Historic Paper on Computability and the Turing Machine


Charles Petzold - 2008
    Turing Mathematician Alan Turing invented an imaginary computer known as the Turing Machine; in an age before computers, he explored the concept of what it meant to be "computable," creating the field of computability theory in the process, a foundation of present-day computer programming.The book expands Turing's original 36-page paper with additional background chapters and extensive annotations; the author elaborates on and clarifies many of Turing's statements, making the original difficult-to-read document accessible to present day programmers, computer science majors, math geeks, and others.Interwoven into the narrative are the highlights of Turing's own life: his years at Cambridge and Princeton, his secret work in cryptanalysis during World War II, his involvement in seminal computer projects, his speculations about artificial intelligence, his arrest and prosecution for the crime of "gross indecency," and his early death by apparent suicide at the age of 41.

Artificial Intelligence: A Modern Approach


Stuart Russell - 1994
    The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa

Neural Networks for Pattern Recognition


Christopher M. Bishop - 1996
    After introducing the basic concepts, the book examines techniques for modeling probability density functions and the properties and merits of the multi-layerperceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.

Artificial Intelligence: A Guide for Thinking Humans


Melanie Mitchell - 2019
    The award-winning author Melanie Mitchell, a leading computer scientist, now reveals AI’s turbulent history and the recent spate of apparent successes, grand hopes, and emerging fears surrounding it.In Artificial Intelligence, Mitchell turns to the most urgent questions concerning AI today: How intelligent—really—are the best AI programs? How do they work? What can they actually do, and when do they fail? How humanlike do we expect them to become, and how soon do we need to worry about them surpassing us? Along the way, she introduces the dominant models of modern AI and machine learning, describing cutting-edge AI programs, their human inventors, and the historical lines of thought underpinning recent achievements. She meets with fellow experts such as Douglas Hofstadter, the cognitive scientist and Pulitzer Prize–winning author of the modern classic Gödel, Escher, Bach, who explains why he is “terrified” about the future of AI. She explores the profound disconnect between the hype and the actual achievements in AI, providing a clear sense of what the field has accomplished and how much further it has to go.Interweaving stories about the science of AI and the people behind it, Artificial Intelligence brims with clear-sighted, captivating, and accessible accounts of the most interesting and provocative modern work in the field, flavored with Mitchell’s humor and personal observations. This frank, lively book is an indispensable guide to understanding today’s AI, its quest for “human-level” intelligence, and its impact on the future for us all.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Vehicles: Experiments in Synthetic Psychology


Valentino Braitenberg - 1984
    They are vehicles, a series of hypothetical, self-operating machines that exhibit increasingly intricate if not always successful or civilized behavior. Each of the vehicles in the series incorporates the essential features of all the earlier models and along the way they come to embody aggression, love, logic, manifestations of foresight, concept formation, creative thinking, personality, and free will. In a section of extensive biological notes, Braitenberg locates many elements of his fantasy in current brain research.

The Myth of Artificial Intelligence: Why Computers Can't Think the Way We Do


Erik J. Larson - 2021
    What hope do we have against superintelligent machines? But we aren't really on the path to developing intelligent machines. In fact, we don't even know where that path might be.A tech entrepreneur and pioneering research scientist working at the forefront of natural language processing, Erik Larson takes us on a tour of the landscape of AI to show how far we are from superintelligence, and what it would take to get there. Ever since Alan Turing, AI enthusiasts have equated artificial intelligence with human intelligence. This is a profound mistake. AI works on inductive reasoning, crunching data sets to predict outcomes. But humans don't correlate data sets: we make conjectures informed by context and experience. Human intelligence is a web of best guesses, given what we know about the world. We haven't a clue how to program this kind of intuitive reasoning, known as abduction. Yet it is the heart of common sense. That's why Alexa can't understand what you are asking, and why AI can only take us so far.Larson argues that AI hype is both bad science and bad for science. A culture of invention thrives on exploring unknowns, not overselling existing methods. Inductive AI will continue to improve at narrow tasks, but if we want to make real progress, we will need to start by more fully appreciating the only true intelligence we know--our own.

Ethics in Information Technology


George W. Reynolds - 2002
    This book offers an excellent foundation in ethical decision-making for current and future business managers and IT professionals.

The AI Does Not Hate You: Superintelligence, Rationality and the Race to Save the World


Tom Chivers - 2019
    But it's also more importantly about a community of people who are trying to think rationally about intelligence, and the places that these thoughts are taking them, and what insight they can and can't give us about the future of the human race over the next few years. It explains why these people are worried, why they might be right, and why they might be wrong. It is a book about the cutting edge of our thinking on intelligence and rationality right now by the people who stay up all night worrying about it.Along the way, we discover why we probably don't need to worry about a future AI resurrecting a perfect copy of our minds and torturing us for not inventing it sooner, but we perhaps should be concerned about paperclips destroying life as we know it; how Mickey Mouse can teach us an important lesson about how to program AI; and how a more rational approach to life could be what saves us all.

The Intelligent Web: Search, Smart Algorithms, and Big Data


Gautam Shroff - 2013
    These days, linger over a Web page selling lamps, and they will turn up at the advertising margins as you move around the Internet, reminding you, tempting you to make that purchase. Search engines such as Google can now look deep into the data on the Web to pull out instances of the words you are looking for. And there are pages that collect and assess information to give you a snapshot of changing political opinion. These are just basic examples of the growth of Web intelligence, as increasingly sophisticated algorithms operate on the vast and growing amount of data on the Web, sifting, selecting, comparing, aggregating, correcting; following simple but powerful rules to decide what matters. While original optimism for Artificial Intelligence declined, this new kind of machine intelligence is emerging as the Web grows ever larger and more interconnected.Gautam Shroff takes us on a journey through the computer science of search, natural language, text mining, machine learning, swarm computing, and semantic reasoning, from Watson to self-driving cars. This machine intelligence may even mimic at a basic level what happens in the brain.