Book picks similar to
Convex Analysis and Optimization by Dimitri P. Bertsekas


mathematics
reference
90-operational-research
textbook-most-solutions-exist

Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People


Aditya Y. Bhargava - 2015
    The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science


Bradley Efron - 2016
    'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Machine Learning


Tom M. Mitchell - 1986
    Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Computer Networks and Internets [With CDROM and Companion Website Access Code Card]


Douglas E. Comer - 1996
    Leading networking authority Douglas Comer presents a wide-ranging, self-contained tour of the concepts, principles, and technologies that enable today's Internet to support applications ranging from web browsing to telephony and multimedia. This Fifth Edition has been thoroughly reorganized, revised, and updated: it includes extensive new coverage of topics ranging from wireless protocols to network performance, while reducing or eliminating coverage of older protocols and technologies. Comer begins by illuminating the applications and facilities offered by today's Internet. Next, he systematically introduces the underlying network technologies and protocols that make them possible: low-level data communications; packet switching, LAN, and WAN technologies; and Internet protocols such as TCP, IP, UDP, and IPv6. With these concepts and technologies established, he introduces several of the most important contemporary issues faced by network implementers and managers, including quality of service, Internet telephony, multimedia, network security, and network management. Comer has carefully designed this book to support both top-down and bottom-up teaching approaches. Students need no background in operating systems, and no sophisticated math: Comer relies throughout on figures, drawings, examples, and analogies, "not" mathematical proofs.

Linear Systems and Signals


B.P. Lathi - 1992
    It gives clear descriptions of linear systems and uses mathematics not only to prove axiomatic theory, but also to enhance physical and intuitive understanding.

Calculus: The Classic Edition


Earl W. Swokowski - 1991
    Groundbreaking in every way when first published, this book is a simple, straightforward, direct calculus text. It's popularity is directly due to its broad use of applications, the easy-to-understand writing style, and the wealth of examples and exercises which reinforce conceptualization of the subject matter. The author wrote this text with three objectives in mind. The first was to make the book more student-oriented by expanding discussions and providing more examples and figures to help clarify concepts. To further aid students, guidelines for solving problems were added in many sections of the text. The second objective was to stress the usefulness of calculus by means of modern applications of derivatives and integrals. The third objective, to make the text as accurate and error-free as possible, was accomplished by a careful examination of the exposition, combined with a thorough checking of each example and exercise.

Decision Trees and Random Forests: A Visual Introduction For Beginners: A Simple Guide to Machine Learning with Decision Trees


Chris Smith - 2017
     They are also used in countless industries such as medicine, manufacturing and finance to help companies make better decisions and reduce risk. Whether coded or scratched out by hand, both algorithms are powerful tools that can make a significant impact. This book is a visual introduction for beginners that unpacks the fundamentals of decision trees and random forests. If you want to dig into the basics with a visual twist plus create your own machine learning algorithms in Python, this book is for you.

File Structures: An Object-Oriented Approach with C++


Michael J. Folk - 1997
    By following the many programming examples included in the book and in the exercise sets, readers will gain a significant understanding of object-oriented techniques and will see how C++ can be an effective software development tool. HIGHLIGHTS *Presents file structures techniques, including direct access I/O, buffer packing and unpacking, indexing, cosequential processing, B-trees, and external hashing. *Includes extensive coverage of secondary storage devices, including disk, tape, and CD-ROM. *Covers the practice of object-oriented design and programming with complete implementations in C++. Every line of code in the book has been tested on a variety of C++ systems and is available on the Internet. *Develops a collection of C++ classes that provide a framework for solving file structure problems. *Includes class definitions, sample applications and programming problems and exercises, making this book a valuable learning and reference tool. ** Instructors materials are available from your sales rep. If you do not know your local sales representative, p

OpenGL SuperBible: Comprehensive Tutorial and Reference


Richard S. Wright Jr. - 1996
    If you want to leverage OpenGL 2.1's major improvements, you really need the Fourth Edition. It's a comprehensive tutorial, systematic API reference, and massive code library, all in one. You'll start with the fundamental techniques every graphics programmer needs: transformations, lighting, texture mapping, and so forth. Then, building on those basics, you'll move towards newer capabilities, from advanced buffers to vertex shaders. Of course, OpenGL's cross-platform availability remains one of its most compelling features. This book's extensive multiplatform coverage has been thoroughly rewritten, and now addresses everything from Windows Vista to OpenGL ES for handhelds. This is stuff you absolutely want the latest edition for. A small but telling point: This book's recently been invited into Addison-Wesley's OpenGL Series, making it an "official" OpenGL book -- and making a powerful statement about its credibility. Bill Camarda, from the August 2007 href="http://www.barnesandnoble.com/newslet... Only

Feynman Lectures On Computation


Richard P. Feynman - 1996
    Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a “Feynmanesque” overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.

Networks: An Introduction


M.E.J. Newman - 2010
    The rise of the Internet and the wide availability of inexpensive computers have made it possible to gather and analyze network data on a large scale, and the development of a variety of new theoretical tools has allowed us to extract new knowledge from many different kinds of networks.The study of networks is broadly interdisciplinary and important developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together for the first time the most important breakthroughs in each of these fields and presents them in a coherent fashion, highlighting the strong interconnections between work in different areas.Subjects covered include the measurement and structure of networks in many branches of science, methods for analyzing network data, including methods developed in physics, statistics, and sociology, the fundamentals of graph theory, computer algorithms, and spectral methods, mathematical models of networks, including random graph models and generative models, and theories of dynamical processes taking place on networks.

Python Algorithms: Mastering Basic Algorithms in the Python Language


Magnus Lie Hetland - 2010
    Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques.The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself.

The Latex Companion


Frank Mittelbach - 1993
    This completely updated edition brings you all the latest information about LaTeX and the vast range of add-on packages now available--over 200 are covered! Full of new tips and tricks for using LaTeX in both traditional and modern typesetting, this book will also show you how to customize layout features to your own needs--from phrases and paragraphs to headings, lists, and pages. Inside, you will find: Expert advice on using LaTeX's basic formatting tools to create all types of publications--from memos to encyclopedias In-depth coverage of important extension packages for tabular and technical typesetting, floats and captions, multicolumn layouts--including reference guides and discussions of the underlying typographic and TeXnical concepts Detailed techniques for generating and typesetting contents lists, bibliographies, indexes, etc. Tips and tricks for LaTeX programmers and systems support New to this edition: Nearly 1,000 fully tested examples that illustrate the text and solve typographical and technical problems--all ready to run! An additional chapter on citations and bibliographies Expanded material on the setup and use of fonts to access a huge collection of glyphs, and to typeset text from a wide range of languages and cultures Major new packages for graphics, "verbatim" listings, floats, and page layout Full coverage of the latest packages for all types ofdocuments--mathematical, multilingual, and many more Detailed help on all error messages, including those troublesome low-level TeX errors Like its predecessor, The LaTeX Companion, Second Edition, is an indispensable reference for anyone wishing to use LaTeX productively. The accompanying CD-ROM contains a complete plug-and-play LaTeX installation, including all the packages and examples featured in the book.