Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Feynman Lectures On Computation


Richard P. Feynman - 1996
    Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a “Feynmanesque” overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.

Data Science for Business: What you need to know about data mining and data-analytic thinking


Foster Provost - 2013
    This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates

Elements of Programming


Alexander Stepanov - 2009
    And then we wonder why software is notorious for being delivered late and full of bugs, while other engineers routinely deliver finished bridges, automobiles, electrical appliances, etc., on time and with only minor defects. This book sets out to redress this imbalance. Members of my advanced development team at Adobe who took the course based on the same material all benefited greatly from the time invested. It may appear as a highly technical text intended only for computer scientists, but it should be required reading for all practicing software engineers." --Martin Newell, Adobe Fellow"The book contains some of the most beautiful code I have ever seen." --Bjarne Stroustrup, Designer of C++"I am happy to see the content of Alex's course, the development and teaching of which I strongly supported as the CTO of Silicon Graphics, now available to all programmers in this elegant little book." --Forest Baskett, General Partner, New Enterprise Associates"Paul's patience and architectural experience helped to organize Alex's mathematical approach into a tightly-structured edifice--an impressive feat!" --Robert W. Taylor, Founder of Xerox PARC CSL and DEC Systems Research Center Elements of Programming provides a different understanding of programming than is presented elsewhere. Its major premise is that practical programming, like other areas of science and engineering, must be based on a solid mathematical foundation. The book shows that algorithms implemented in a real programming language, such as C++, can operate in the most general mathematical setting. For example, the fast exponentiation algorithm is defined to work with any associative operation. Using abstract algorithms leads to efficient, reliable, secure, and economical software.This is not an easy book. Nor is it a compilation of tips and tricks for incremental improvements in your programming skills. The book's value is more fundamental and, ultimately, more critical for insight into programming. To benefit fully, you will need to work through it from beginning to end, reading the code, proving the lemmas, and doing the exercises. When finished, you will see how the application of the deductive method to your programs assures that your system's software components will work together and behave as they must.The book presents a number of algorithms and requirements for types on which they are defined. The code for these descriptions--also available on the Web--is written in a small subset of C++ meant to be accessible to any experienced programmer. This subset is defined in a special language appendix coauthored by Sean Parent and Bjarne Stroustrup.Whether you are a software developer, or any other professional for whom programming is an important activity, or a committed student, you will come to understand what the book's experienced authors have been teaching and demonstrating for years--that mathematics is good for programming, and that theory is good for practice.

Learning Android


Marko Gargenta - 2011
    Written by an expert who's taught this mobile platform to hundreds of developers in large organizations, this gentle introduction shows experienced object-oriented programmers how to use Android’s basic building blocks to create user interfaces, store data, connect to the network, and more.You'll build a Twitter-like application throughout the course of this book, adding new features with each chapter. Along the way, you'll also create your own toolbox of code patterns to help you program any type of Android application with ease.Get an overview of the Android platform and discover how it fits into the mobile ecosystemLearn about the Android stack, including its application framework, and the structure and distribution of application packages (APK)Set up your Android development environment and get started with simple programsUse Android’s building blocks—Activities, Intents, Services, Content Providers, and Broadcast ReceiversLearn how to build basic Android user interfaces and organize UI elements in Views and LayoutsBuild a service that uses a background process to update data in your applicationGet an introduction to Android Interface Definition Language (AIDL) and the Native Development Kit (NDK)

UML Distilled: A Brief Guide to the Standard Object Modeling Language


Martin Fowler - 1997
    This third edition is the best resource for quick, no-nonsense insights into understanding and using UML 2.0 and prior versions of the UML. Some readers will want to quickly get up to speed with the UML 2.0 and learn the essentials of the UML. Others will use this book as a handy, quick reference to the most common parts of the UML. The author delivers on both of these promises in a short, concise, and focused presentation. This book describes all the major UML diagram types, what they're used for, and the basic notation involved in creating and deciphering them. These diagrams include class, sequence, object, package, deployment, use case, state machine, activity, communication, composite structure, component, interaction overview, and timing diagrams. The examples are clear and the explanations cut to the fundamental design logic. Includes a quick reference to the most useful parts of the UML notation and a useful summary of diagram types that were added to the UML 2.0. If you are like most developers, you don't have time to keep up with all the new innovations in software engineering. This new edition of Fowler's classic work gets you acquainted with some of the best thinking about efficient object-oriented software design using the UML--in a convenient format that will be essential to anyone who designs software professionally.

3D Math Primer for Graphics and Game Development


Fletcher Dunn - 2002
    The Authors Discuss The Mathematical Theory In Detail And Then Provide The Geometric Interpretation Necessary To Make 3D Math Intuitive. Working C++ Classes Illustrate How To Put The Techniques Into Practice, And Exercises At The End Of Each Chapter Help Reinforce The Concepts. This Book Explains Basic Concepts Such As Vectors, Coordinate Spaces, Matrices, Transformations, Euler Angles, Homogenous Coordinates, Geometric Primitives, Intersection Tests, And Triangle Meshes. It Discusses Orientation In 3D, Including Thorough Coverage Of Quaternions And A Comparison Of The Advantages And Disadvantages Of Different Representation Techniques. The Text Describes Working C++ Classes For Mathematical And Geometric Entities And Several Different Matrix Classes, Each Tailored To Specific Geometric Tasks. Also Included Are Complete Derivations For All The Primitive Transformation Matrices.

Effective Objective-C 2.0: 52 Specific Ways to Improve Your IOS and OS X Programs


Matt Galloway - 2013
    Using the concise, scenario-driven style pioneered in Scott Meyers' best-selling Effective C++, Matt Galloway brings together 52 Objective-C best practices, tips, shortcuts, and realistic code examples that are available nowhere else. Through real-world examples, Galloway uncovers little-known Objective-C quirks, pitfalls, and intricacies that powerfully impact code behavior and performance. You'll learn how to choose the most efficient and effective way to accomplish key tasks when multiple options exist, and how to write code that's easier to understand, maintain, and improve. Galloway goes far beyond the core language, helping you integrate and leverage key Foundation framework classes and modern system libraries, such as Grand Central Dispatch. Coverage includes Optimizing interactions and relationships between Objective-C objects Mastering interface and API design: writing classes that feel "right at home" Using protocols and categories to write maintainable, bug-resistant code Avoiding memory leaks that can still occur even with Automatic Reference Counting (ARC) Writing modular, powerful code with Blocks and Grand Central Dispatch Leveraging differences between Objective-C protocols and multiple inheritance in other languages Improving code by more effectively using arrays, dictionaries, and sets Uncovering surprising power in the Cocoa and Cocoa Touch frameworks

RHCSA/RHCE Red Hat Linux Certification Study Guide (Exams EX200 & EX300), 6th Edition (Certification Press)


Michael Jang - 2011
    100 complete coverage of all official objectives for Exams EX200 and EX300 Exam Readiness Checklist-youre ready for the exam when all objectives on the list are checked off Inside the Exam sections in every chapter highlight key exam topics covered Two-Minute Drills for quick review 100 lab questions-two full lab-based RHCSA exams and two full lab-based RHCE exams-match the format, tone, topics, and difficulty of the real exam Covers all the exam topics, including Virtual Machines and Automated Installations Fundamental Command Line Skills RHCSA-Level Security Options The Boot Process Linux Filesystem Administration Package Management User Administration RHCSA-Level System Administration RHCE Security System Services and SELinux RHCE Administration Mail Servers Samba File Sharing DNS, FTP, and Logging CD-ROM includes Complete lab-based exam preparation, featuring Two full RHCSA practice exams Two full RHCE practice exams Lab-based chapter self tests In-depth answer explanations for all labs RHCSA and RHCE Glossary PDF copy of the book for studying on the go Michael Jang, RHCE, LPIC-2, UCP, LCP, MCP, is the author of three previous bestselling editions of RHCE Red Hat Certified Engineer Linux Study Guide and several other books on Linux and professional certification.

Learn Python The Hard Way


Zed A. Shaw - 2010
    The title says it is the hard way to learn to writecode but it’s actually not. It’s the “hard” way only in that it’s the way people used to teach things. In this book youwill do something incredibly simple that all programmers actually do to learn a language: 1. Go through each exercise. 2. Type in each sample exactly. 3. Make it run.That’s it. This will be very difficult at first, but stick with it. If you go through this book, and do each exercise for1-2 hours a night, then you’ll have a good foundation for moving on to another book. You might not really learn“programming” from this book, but you will learn the foundation skills you need to start learning the language.This book’s job is to teach you the three most basic essential skills that a beginning programmer needs to know:Reading And Writing, Attention To Detail, Spotting Differences.

Python Algorithms: Mastering Basic Algorithms in the Python Language


Magnus Lie Hetland - 2010
    Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques.The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself.

Programming Rust: Fast, Safe Systems Development


Jim Blandy - 2015
    Rust's modern, flexible types ensure your program is free of null pointer dereferences, double frees, dangling pointers, and similar bugs, all at compile time, without runtime overhead. In multi-threaded code, Rust catches data races at compile time, making concurrency much easier to use.Written by two experienced systems programmers, this book explains how Rust manages to bridge the gap between performance and safety, and how you can take advantage of it. Topics include:How Rust represents values in memory (with diagrams)Complete explanations of ownership, moves, borrows, and lifetimesCargo, rustdoc, unit tests, and how to publish your code on crates.io, Rust's public package repositoryHigh-level features like generic code, closures, collections, and iterators that make Rust productive and flexibleConcurrency in Rust: threads, mutexes, channels, and atomics, all much safer to use than in C or C++Unsafe code, and how to preserve the integrity of ordinary code that uses itExtended examples illustrating how pieces of the language fit together

Software Requirements 3


Karl Wiegers - 1999
    Two leaders in the requirements community have teamed up to deliver a contemporary set of practices covering the full range of requirements development and management activities on software projects. Describes practical, effective, field-tested techniques for managing the requirements engineering process from end to end. Provides examples demonstrating how requirements "good practices" can lead to fewer change requests, higher customer satisfaction, and lower development costs. Fully updated with contemporary examples and many new practices and techniques. Describes how to apply effective requirements practices to agile projects and numerous other special project situations. Targeted to business analysts, developers, project managers, and other software project stakeholders who have a general understanding of the software development process. Shares the insights gleaned from the authors' extensive experience delivering hundreds of software-requirements training courses, presentations, and webinars.New chapters are included on specifying data requirements, writing high-quality functional requirements, and requirements reuse. Considerable depth has been added on business requirements, elicitation techniques, and nonfunctional requirements. In addition, new chapters recommend effective requirements practices for various special project situations, including enhancement and replacement, packaged solutions, outsourced, business process automation, analytics and reporting, and embedded and other real-time systems projects.

Programming in Haskell


Graham Hutton - 2006
    This introduction is ideal for beginners: it requires no previous programming experience and all concepts are explained from first principles via carefully chosen examples. Each chapter includes exercises that range from the straightforward to extended projects, plus suggestions for further reading on more advanced topics. The author is a leading Haskell researcher and instructor, well-known for his teaching skills. The presentation is clear and simple, and benefits from having been refined and class-tested over several years. The result is a text that can be used with courses, or for self-learning. Features include freely accessible Powerpoint slides for each chapter, solutions to exercises and examination questions (with solutions) available to instructors, and a downloadable code that's fully compliant with the latest Haskell release.

Agile Software Development with Scrum


Ken Schwaber - 2001
    The Agile software process allows a company to implement eXtreme Programming quickly and immediately-and to begin producing software incrementally in as little as 30 days! Implementing eXtreme Programming is easier said than done. The process can be time consuming and actually slow down current software projects that are in process. This book shows readers how to use SCRUM, an Agile software development process, to quickly and seamlessly implement XP in their shop-while still producing actual software. Using SCRUM and the Agile process can virtually eliminate all downtime during an XP implementation.