In Pursuit of the Unknown: 17 Equations That Changed the World


Ian Stewart - 2012
    We often overlook the historical link between mathematics and technological advances, says Stewart—but this connection is integral to any complete understanding of human history.Equations are modeled on the patterns we find in the world around us, says Stewart, and it is through equations that we are able to make sense of, and in turn influence, our world. Stewart locates the origins of each equation he presents—from Pythagoras's Theorem to Newton's Law of Gravity to Einstein's Theory of Relativity—within a particular historical moment, elucidating the development of mathematical and philosophical thought necessary for each equation's discovery. None of these equations emerged in a vacuum, Stewart shows; each drew, in some way, on past equations and the thinking of the day. In turn, all of these equations paved the way for major developments in mathematics, science, philosophy, and technology. Without logarithms (invented in the early 17th century by John Napier and improved by Henry Briggs), scientists would not have been able to calculate the movement of the planets, and mathematicians would not have been able to develop fractal geometry. The Wave Equation is one of the most important equations in physics, and is crucial for engineers studying the vibrations in vehicles and the response of buildings to earthquakes. And the equation at the heart of Information Theory, devised by Claude Shannon, is the basis of digital communication today.An approachable and informative guide to the equations upon which nearly every aspect of scientific and mathematical understanding depends, In Pursuit of the Unknown is also a reminder that equations have profoundly influenced our thinking and continue to make possible many of the advances that we take for granted.

A Strange Wilderness: The Lives of the Great Mathematicians


Amir D. Aczel - 2011
    As exciting as any action/adventure novel, this is actually the story of incredible individuals and engrossing tales behind the most profound, enduring mathematical theorems.Archimedes famously ran naked through the streets shouting, “Eureka, eureka!” after finding a method for measuring the volume of an irregular-shaped object. René Descartes was not only a great French mathematician, philosopher, physicist, and natural scientist; he was also an expert swordsman who traveled with European armies from town to town, dressed in green taffeta and accompanied by a valet. Georg Cantor grappled with mental illness as he explored the highly counterintuitive, bizarre properties of infinite sets and numbers. Emmy Noether struggled to find employment as she laid the mathematical groundwork for modern theoretical physics. And Alexander Grothendieck taught himself mathematics while interned in Nazi concentration camps, only to disappear into the Pyrenees at the zenith of his career.These are just a few stories recounted in this absorbing narrative. In probing the lives of the preeminent mathematicians in history, a Strange Wilderness will leave you entertained and enlightened, with a newfound appreciation of the tenacity, complexity, and brilliance of the mathematical genius.

Why Does E=mc²? (And Why Should We Care?)


Brian Cox - 2009
    Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.

Algebra - The Very Basics


Metin Bektas - 2014
    This book picks you up at the very beginning and guides you through the foundations of algebra using lots of examples and no-nonsense explanations. Each chapter contains well-chosen exercises as well as all the solutions. No prior knowledge is required. Topics include: Exponents, Brackets, Linear Equations and Quadratic Equations. For a more detailed table of contents, use the "Look Inside" feature. From the author of "Great Formulas Explained" and "Physics! In Quantities and Examples".

Math on Trial: How Numbers Get Used and Abused in the Courtroom


Leila Schneps - 2013
    Even the simplest numbers can become powerful forces when manipulated by politicians or the media, but in the case of the law, your liberty -- and your life -- can depend on the right calculation. In Math on Trial, mathematicians Leila Schneps and Coralie Colmez describe ten trials spanning from the nineteenth century to today, in which mathematical arguments were used -- and disastrously misused -- as evidence. They tell the stories of Sally Clark, who was accused of murdering her children by a doctor with a faulty sense of calculation; of nineteenth-century tycoon Hetty Green, whose dispute over her aunt's will became a signal case in the forensic use of mathematics; and of the case of Amanda Knox, in which a judge's misunderstanding of probability led him to discount critical evidence -- which might have kept her in jail. Offering a fresh angle on cases from the nineteenth-century Dreyfus affair to the murder trial of Dutch nurse Lucia de Berk, Schneps and Colmez show how the improper application of mathematical concepts can mean the difference between walking free and life in prison. A colorful narrative of mathematical abuse, Math on Trial blends courtroom drama, history, and math to show that legal expertise isn't't always enough to prove a person innocent.

Practical Algebra: A Self-Teaching Guide


Peter H. Selby - 1974
    Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical, real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio, proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry, and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.

Gamma: Exploring Euler's Constant


Julian Havil - 2003
    Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"

Gödel, Escher, Bach: An Eternal Golden Braid


Douglas R. Hofstadter - 1979
    However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.

The Golden Ratio: The Divine Beauty of Mathematics


Gary B. Meisner - 2018
    This gorgeous book features clear, entertaining, and enlightening commentary alongside stunning full-color illustrations by Venezuelan artist and architect Rafael Araujo. From the pyramids of Giza, to quasicrystals, to the proportions of the human face, the golden ratio has an infinite capacity to generate shapes with exquisite properties.  With its lush format and layflat dimensions that closely approximate the golden ratio, this is the ultimate coffee table book for math enthusiasts, architects, designers, and fans of sacred geometry.

Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace


Leonard Mlodinow - 2001
    Here is an altogether new, refreshing, alternative history of math revealing how simple questions anyone might ask about space -- in the living room or in some other galaxy -- have been the hidden engine of the highest achievements in science and technology. Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.

Mathematics and Its History


John Stillwell - 1997
    Even when dealing with standard material, Stillwell manages to dramatize it and to make it worth rethinking. In short, his book is a splendid addition to the genre of works that build royal roads to mathematical culture for the many." (Mathematical Intelligencer)This second edition includes new chapters on Chinese and Indian number theory, on hypercomplex numbers, and on algebraic number theory. Many more exercises have been added, as well as commentary to the exercises explaining how they relate to the preceding section, and how they foreshadow later topics.

The Calculus Story: A Mathematical Adventure


David Acheson - 2017
    It is the mathematical method for the analysis of things that change, and since in the natural world we are surrounded by change, the development of calculus was a huge breakthrough in the history of mathematics. But it is also something of a mathematical adventure, largely because of the way infinity enters at virtually every twist and turn...In The Calculus Story David Acheson presents a wide-ranging picture of calculus and its applications, from ancient Greece right up to the present day. Drawing on their original writings, he introduces the people who helped to build our understanding of calculus. With a step by step treatment, he demonstrates how to start doing calculus, from the very beginning.

Algebra


Michael Artin - 1991
    Linear algebra is tightly integrated into the text.

Relativity: The Special and the General Theory


Albert Einstein - 1916
    Having just completed his masterpiece, The General Theory of Relativity—which provided a brand-new theory of gravity and promised a new perspective on the cosmos as a whole—he set out at once to share his excitement with as wide a public as possible in this popular and accessible book.Here published for the first time as a Penguin Classic, this edition of Relativity features a new introduction by bestselling science author Nigel Calder.

Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving


Sanjoy Mahajan - 2010
    Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.