The Practice of Network Security Monitoring: Understanding Incident Detection and Response


Richard Bejtlich - 2013
    The most effective computer security strategies integrate network security monitoring (NSM): the collection and analysis of data to help you detect and respond to intrusions.In The Practice of Network Security Monitoring, Mandiant CSO Richard Bejtlich shows you how to use NSM to add a robust layer of protection around your networks — no prior experience required. To help you avoid costly and inflexible solutions, he teaches you how to deploy, build, and run an NSM operation using open source software and vendor-neutral tools.You'll learn how to:Determine where to deploy NSM platforms, and size them for the monitored networks Deploy stand-alone or distributed NSM installations Use command line and graphical packet analysis tools, and NSM consoles Interpret network evidence from server-side and client-side intrusions Integrate threat intelligence into NSM software to identify sophisticated adversaries There's no foolproof way to keep attackers out of your network. But when they get in, you'll be prepared. The Practice of Network Security Monitoring will show you how to build a security net to detect, contain, and control them. Attacks are inevitable, but losing sensitive data shouldn't be.

The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge


William Poundstone - 1984
    Topics include the limits of knowledge, paradox of complexity, Maxwell's demon, Big Bang theory, much more. 1985 edition.

Python Testing with Pytest: Simple, Rapid, Effective, and Scalable


Brian Okken - 2017
    The pytest testing framework helps you write tests quickly and keep them readable and maintainable - with no boilerplate code. Using a robust yet simple fixture model, it's just as easy to write small tests with pytest as it is to scale up to complex functional testing for applications, packages, and libraries. This book shows you how.For Python-based projects, pytest is the undeniable choice to test your code if you're looking for a full-featured, API-independent, flexible, and extensible testing framework. With a full-bodied fixture model that is unmatched in any other tool, the pytest framework gives you powerful features such as assert rewriting and plug-in capability - with no boilerplate code.With simple step-by-step instructions and sample code, this book gets you up to speed quickly on this easy-to-learn and robust tool. Write short, maintainable tests that elegantly express what you're testing. Add powerful testing features and still speed up test times by distributing tests across multiple processors and running tests in parallel. Use the built-in assert statements to reduce false test failures by separating setup and test failures. Test error conditions and corner cases with expected exception testing, and use one test to run many test cases with parameterized testing. Extend pytest with plugins, connect it to continuous integration systems, and use it in tandem with tox, mock, coverage, unittest, and doctest.Write simple, maintainable tests that elegantly express what you're testing and why.What You Need: The examples in this book are written using Python 3.6 and pytest 3.0. However, pytest 3.0 supports Python 2.6, 2.7, and Python 3.3-3.6.

The Visual Display of Quantitative Information


Edward R. Tufte - 1983
    Theory and practice in the design of data graphics, 250 illustrations of the best (and a few of the worst) statistical graphics, with detailed analysis of how to display data for precise, effective, quick analysis. Design of the high-resolution displays, small multiples. Editing and improving graphics. The data-ink ratio. Time-series, relational graphics, data maps, multivariate designs. Detection of graphical deception: design variation vs. data variation. Sources of deception. Aesthetics and data graphical displays. This is the second edition of The Visual Display of Quantitative Information. Recently published, this new edition provides excellent color reproductions of the many graphics of William Playfair, adds color to other images, and includes all the changes and corrections accumulated during 17 printings of the first edition.

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Python Machine Learning


Sebastian Raschka - 2015
    We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world

Hello, Android: Introducing Google's Mobile Development Platform


Ed Burnette - 2008
    In a few years, it's expected to be found inside millions of cell phones and other mobile devices, making Android a major platform for application developers. That could be your own program running on all those devices.Getting started developing with Android is easy. You don't even need access to an Android phone, just a computer where you can install the Android SDK and the phone emulator that comes with it. Within minutes, "Hello, Android" will get you creating your first working application: Android's version of "Hello, World."From there, you'll build up a more substantial example: an Android Sudoku game. By gradually adding features to the game throughout the course of the book, you'll learn about many aspects of Android programming including user interfaces, multimedia, and the Android life cycle.If you're a busy developer who'd rather be coding than reading about coding, this book is for you. To help you find what you need to know fast, each chapter ends with "Fast forward" section. These sections provide guidance for where you should go next when you need to read the book out of order.

Calculus and Analytic Geometry


George B. Thomas Jr. - 1920
    It features a visual presentation, designed to encourage learning; revised exercises to ensure clarity, balance and relevance; and clear commentary on the difficult subject of critical multivariable calculus topics.

Purely Functional Data Structures


Chris Okasaki - 1996
    However, data structures for these languages do not always translate well to functional languages such as Standard ML, Haskell, or Scheme. This book describes data structures from the point of view of functional languages, with examples, and presents design techniques that allow programmers to develop their own functional data structures. The author includes both classical data structures, such as red-black trees and binomial queues, and a host of new data structures developed exclusively for functional languages. All source code is given in Standard ML and Haskell, and most of the programs are easily adaptable to other functional languages. This handy reference for professional programmers working with functional languages can also be used as a tutorial or for self-study.

Physically Based Rendering: From Theory to Implementation


Matt Pharr - 2004
    The result is a stunning achievement in graphics education. Through the ideas and software in this book, you will learn to design and employ a full-featured rendering system for creating stunning imagery.This new edition greatly refines its best-selling predecessor by streamlining all obsolete code as well as adding sections on parallel rendering and system design; animating transformations; multispectral rendering; realistic lens systems; blue noise and adaptive sampling patterns and reconstruction; measured BRDFs; and instant global illumination, as well as subsurface and multiple-scattering integrators.These updates reflect the current state-of-the-art technology, and along with the lucid pairing of text and code, ensure the book's leading position as a reference text for those working with images, whether it is for film, video, photography, digital design, visualization, or gaming.

Regular Expressions Cookbook


Jan Goyvaerts - 2009
    Every programmer can find uses for regular expressions, but their power doesn't come worry-free. Even seasoned users often suffer from poor performance, false positives, false negatives, or perplexing bugs. Regular Expressions Cookbook offers step-by-step instructions for some of the most common tasks involving this tool, with recipes for C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET.With this book, you will:Understand the basics of regular expressions through a concise tutorial Use regular expressions effectively in several programming and scripting languages Learn how to validate and format input Manage words, lines, special characters, and numerical values Find solutions for using regular expressions in URLs, paths, markup, and data exchange Learn the nuances of more advanced regex features Understand how regular expressions' APIs, syntax, and behavior differ from language to language Write better regular expressions for custom needs Whether you're a novice or an experienced user, Regular Expressions Cookbook will help deepen your knowledge of this unique and irreplaceable tool. You'll learn powerful new tricks, avoid language-specific gotchas, and save valuable time with this huge library of proven solutions to difficult, real-world problems.

Learn Windows PowerShell 3 in a Month of Lunches


Don Jones - 2011
    Just set aside one hour a day—lunchtime would be perfect—for a month, and you'll be automating Windows tasks faster than you ever thought possible. You'll start with the basics—what is PowerShell and what can you do with it. Then, you'll move systematically through the techniques and features you'll use to make your job easier and your day shorter. This totally revised second edition covers new PowerShell 3 features designed for Windows 8 and Windows Server 2012.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.What's InsideLearn PowerShell from the beginning—no experience required! Covers PowerShell 3, Windows 8, and Windows Server 2012 Each lesson should take you one hour or lessAbout the TechnologyPowerShell is both a language and an administrative shell with which you can control and automate nearly every aspect of Windows. It accepts and executes commands immediately, and you can write scripts to manage most Windows servers like Exchange, IIS, and SharePoint.Experience with Windows administration is helpful. No programming experience is assumed.Table of ContentsBefore you begin Meet PowerShell Using the help system Running commands Working with providers The pipeline: connecting commands Adding commands Objects: data by another name The pipeline, deeper Formatting—and why it's done on the right Filtering and comparisons A practical interlude Remote control: one to one, and one to many Using Windows Management Instrumentation Multitasking with background jobs Working with many objects, one at a time Security alert! Variables: a place to store your stuff Input and output Sessions: remote control with less work You call this scripting? Improving your parameterized script Advanced remoting configuration Using regular expressions to parse text files Additional random tips, tricks, and techniques Using someone else's script Never the end PowerShell cheat sheet

Fuzzy Thinking: The New Science of Fuzzy Logic


Bart Kosko - 1993
    An authoritative introduction to "fuzzy logic" brings readers up to speed on the "smart" products and computers that will change all of our lives in the future.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming


Eric Matthes - 2015
    You'll also learn how to make your programs interactive and how to test your code safely before adding it to a project. In the second half of the book, you'll put your new knowledge into practice with three substantial projects: a Space Invaders-inspired arcade game, data visualizations with Python's super-handy libraries, and a simple web app you can deploy online.As you work through Python Crash Course, you'll learn how to: Use powerful Python libraries and tools, including matplotlib, NumPy, and PygalMake 2D games that respond to keypresses and mouse clicks, and that grow more difficult as the game progressesWork with data to generate interactive visualizationsCreate and customize simple web apps and deploy them safely onlineDeal with mistakes and errors so you can solve your own programming problemsIf you've been thinking seriously about digging into programming, Python Crash Course will get you up to speed and have you writing real programs fast. Why wait any longer? Start your engines and code!

Cognitive Behavioral Therapy: CBT Essentials and Fundamentals


Jonny Bell - 2014
    In our modern world, we see people struggling with depression, anxiety, anger, etc. Psychologist and counselors have been using Cognitive Behavioral Therapy to solve all these struggles. A Practical Guide to CBT and Modern Psychology will allow anyone to use CBT in their lives. It doesn't matter whether or not you have a background in Psychology. In this comprehensive guide you will learn all the fundamentals used in CBT by therapists. Inside you will be exposed to the following: CBT History Techniques When and How to use CBT Examples Methods to help others with psychological struggles And much more If you're ready to understand and use the powerful techniques of Cognitive Behavioral Therapy, then this is an excellent guide.