Alice and Bob Meet the Wall of Fire: The Biggest Ideas in Science from Quanta


Thomas Lin - 2018
    Bringing together the best and most interesting science stories appearing in Quanta Magazine over the past five years, Alice and Bob Meet the Wall of Fire reports on some of the greatest scientific minds as they test the limits of human knowledge. Quanta, under editor-in-chief Thomas Lin, is the only popular publication that offers in-depth coverage of today's challenging, speculative, cutting-edge science. It communicates science by taking it seriously, wrestling with difficult concepts and clearly explaining them in a way that speaks to our innate curiosity about our world and ourselves.In the title story, Alice and Bob--beloved characters of various thought experiments in physics--grapple with gravitational forces, possible spaghettification, and a massive wall of fire as Alice jumps into a black hole. Another story considers whether the universe is impossible, in light of experimental results at the Large Hadron Collider. We learn about quantum reality and the mystery of quantum entanglement; explore the source of time's arrow; and witness a eureka moment when a quantum physicist exclaims: "Finally, we can understand why a cup of coffee equilibrates in a room." We reflect on humans' enormous skulls and the Brain Boom; consider the evolutionary benefits of loneliness; peel back the layers of the newest artificial-intelligence algorithms; follow the "battle for the heart and soul of physics"; and mourn the disappearance of the "diphoton bump," revealed to be a statistical fluctuation rather than a revolutionary new particle. These stories from Quanta give us a front-row seat to scientific discovery.ContributorsPhilip Ball, K. C. Cole, Robbert Dijkgraaf, Dan Falk, Courtney Humphries, Ferris Jabr, Katia Moskvitch, George Musser, Michael Nielsen, Jennifer Ouellette, John Pavlus, Emily Singer, Andreas von Bubnoff, Frank Wilczek, Natalie Wolchover, Carl Zimmer

Thinking Physics: Understandable Practical Reality


Lewis Carroll Epstein - 1989
    Thinking Physics is a perfect beginner’s guide to an amazingly wide range of physics-related questions. The book targets topics that science teachers and students spend time wondering about, like wing lift. Epstein elucidates the familiar but misunderstood — such as how tides work — along with more obscure but fascinating phenomena like the “Bernoulli sub” and the “artificial aurora” created by hydrogen bombs. Broken into many short sections and peppered with Epstein’s own playful hand-drawn illustrations, the book does not simply give the right answer: It also goes into the answers that seem right but are wrong and shows why they are wrong — a rarity in science books. Thinking Physics is a rigorously correct, lighthearted, and cleverly designed Q and A book for physicists of all ages.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Classical Dynamics of Particles and Systems


Jerry B. Marion - 1970
    Vector calculus is used extensively to explore topics.The Lagrangian formulation of mechanics is introduced early to show its powerful problem solving ability.. Modern notation and terminology are used throughout in support of the text's objective: to facilitate students' transition to advanced physics and the mathematical formalism needed for the quantum theory of physics. CLASSICAL DYNAMICS OF PARTICLES AND SYSTEMS can easily be used for a one- or two-semester course, depending on the instructor's choice of topics.

The Quantum World: Quantum Physics for Everyone


Kenneth W. Ford - 2004
    Ford shows us in The Quantum World, the laws governing the very small and the very swift defy common sense and stretch our minds to the limit. Drawing on a deep familiarity with the discoveries of the twentieth century, Ford gives an appealing account of quantum physics that will help the serious reader make sense of a science that, for all its successes, remains mysterious. In order to make the book even more suitable for classroom use, the author, assisted by Diane Goldstein, has included a new section of Quantum Questions at the back of the book. A separate answer manual to these 300+ questions is available; visit The Quantum World website for ordering information.There is also a cloth edition of this book, which does not include the Quantum Questions included in this paperback edition.

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Compilers: Principles, Techniques, and Tools


Alfred V. Aho - 1986
    The authors present updated coverage of compilers based on research and techniques that have been developed in the field over the past few years. The book provides a thorough introduction to compiler design and covers topics such as context-free grammars, fine state machines, and syntax-directed translation.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Relativity: A Very Short Introduction


Russell Stannard - 2008
    Travel fast enough and you could weigh as much as a jumbo jet, be flattened thinner than a CD without feeling a thing-and live forever! As for the angles of a triangle, they do not always have to add up to 180 degrees. And then, of course, there are black holes. These are but a few of the extraordinary consequences of Einstein's theory of relativity. It is now over a hundred years since he made these discoveries, and yet the general public is still largely unaware of them. Filled with illuminating anecdotes and fascinating accounts of experiments, this book aims to introduce the interested lay person to the subject of relativity in a way which is accessible and engaging and at the same time scientifically rigorous. With relatively few mathematical equations--nothing more complicated than the Pythagoras's Theorem--this VSI packs a lot time into very little space, and for anyone who has felt intimidated by Einstein's groundbreaking theory, it offers the perfect place to start. About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.

Computational Fluid Dynamics


John D. Anderson Jr. - 1995
    It can also serve as a one-semester introductory course at the beginning graduate level, as a useful precursor to a more serious study of CFD in advanced books. It is presented in a very readable, informal, enjoyable style.

The New Quantum Universe


Tony Hey - 2003
    Quantum paradoxes and the eventful life of Schroedinger's Cat are explained, along with the Many Universe explanation of quantum measurement in this newly revised edition. Updated throughout, the book also looks ahead to the nanotechnology revolution and describes quantum cryptography, computing and teleportation. Including an account of quantum mechanics and science fiction, this accessible book is geared to the general reader. Anthony Hey teaches at the University of Southampton, UK, and is the co-author of several books, including two with Patrick Walters, The Quantum Universe (Cambridge, 1987), and Einstein's Mirror (Cambridge, 1997). Patrick Walters is a Lecturer in Continuing Education at the University of Wales at Swansea. He co-ordinates the Physical Science Programme in DACE which includes the Astronomy Programme. His research interests include science education, and he also writes non-technical books on science for the general reader and beginning undergraduates. First Edition Pb (1987): 0-521-31845-9

How to Bake Pi: An Edible Exploration of the Mathematics of Mathematics


Eugenia Cheng - 2015
    Of course, it’s not all cooking; we’ll also run the New York and Chicago marathons, pay visits to Cinderella and Lewis Carroll, and even get to the bottom of a tomato’s identity as a vegetable. This is not the math of our high school classes: mathematics, Cheng shows us, is less about numbers and formulas and more about how we know, believe, and understand anything, including whether our brother took too much cake.At the heart of How to Bake Pi is Cheng’s work on category theory—a cutting-edge “mathematics of mathematics.” Cheng combines her theory work with her enthusiasm for cooking both to shed new light on the fundamentals of mathematics and to give readers a tour of a vast territory no popular book on math has explored before. Lively, funny, and clear, How to Bake Pi will dazzle the initiated while amusing and enlightening even the most hardened math-phobe.

The Tao of Physics: An Exploration of the Parallels between Modern Physics and Eastern Mysticism


Fritjof Capra - 1975
    

Practical Electronics for Inventors


Paul Scherz - 1998
    Instead, it tells you-and shows you-what basic and advanced electronics parts and components do, and how they work. Chock-full of illustrations, Practical Electronics for Inventors offers over 750 hand-drawn images that provide clear, detailed instructions that can help turn theoretical ideas into real-life inventions and gadgets.

Artificial Intelligence: A Modern Approach


Stuart Russell - 1994
    The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa