Introduction to Modern Optics


Grant R. Fowles - 1968
    The first half of the book deals with classical physical optics; the second principally with the quantum nature of light. Chapters 1 and 2 treat the propagation of light waves, including the concepts of phase and group velocities, and the vectorial nature of light. Chapter 3 applies the concepts of partial coherence and coherence length to the study of interference, and Chapter 4 takes up multiple-beam interference and includes Fabry-Perot interferometry and multilayer-film theory. Diffraction and holography are the subjects of Chapter 5, and the propagation of light in material media (including crystal and nonlinear optics) are central to Chapter 6. Chapters 7 and 8 introduce the quantum theory of light and elementary optical spectra, and Chapter 9 explores the theory of light amplification and lasers. Chapter 10 briefly outlines ray optics in order to introduce students to the matrix method for treating optical systems and to apply the ray matrix to the study of laser resonators.Many applications of the laser to the study of optics are integrated throughout the text. The author assumes students have had an intermediate course in electricity and magnetism and some advanced mathematics beyond calculus. For classroom use, a list of problems is included at the end of each chapter, with selected answers at the end of the book.

Einstein's Telescope: The Hunt for Dark Matter and Dark Energy in the Universe


Evalyn Gates - 2009
    Dark matter. These strange and invisible substances don't just sound mysterious: their unexpected appearance in the cosmic census is upending long-held notions about the nature of the Universe. Astronomers have long known that the Universe is expanding, but everything they could see indicated that gravity should be slowing this spread. Instead, it appears that the Universe is accelerating its expansion and that something stronger than gravity--dark energy--is at work. In Einstein's Telescope Evalyn Gates, a University of Chicago astrophysicist, transports us to the edge of contemporary science to explore the revolutionary tool that unlocks the secrets of these little-understood cosmic constituents. Based on Einstein's theory of general relativity, gravitational lensing, or "Einstein's Telescope," is enabling new discoveries that are taking us toward the next revolution in scientific thinking--one that may change forever our notions of where the Universe came from and where it is going.

The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos


Brian Greene - 2011
    Everything. Yet, in recent years discoveries in physics and cosmology have led a number of scientists to conclude that our universe may be one among many. With crystal-clear prose and inspired use of analogy, Brian Greene shows how a range of different “multiverse” proposals emerges from theories developed to explain the most refined observations of both subatomic particles and the dark depths of space: a multiverse in which you have an infinite number of doppelgängers, each reading this sentence in a distant universe; a multiverse comprising a vast ocean of bubble universes, of which ours is but one; a multiverse that endlessly cycles through time, or one that might be hovering millimeters away yet remains invisible; another in which every possibility allowed by quantum physics is brought to life. Or, perhaps strangest of all, a multiverse made purely of math.Greene, one of our foremost physicists and science writers, takes us on a captivating exploration of these parallel worlds and reveals how much of reality’s true nature may be deeply hidden within them. And, with his unrivaled ability to make the most challenging of material accessible and entertaining, Greene tackles the core question: How can fundamental science progress if great swaths of reality lie beyond our reach?Sparked by Greene’s trademark wit and precision, The Hidden Reality is at once a far-reaching survey of cutting-edge physics and a remarkable journey to the very edge of reality—a journey grounded firmly in science and limited only by our imagination.

The Science of Interstellar


Kip S. Thorne - 2014
    Yet in The Science of Interstellar, Kip Thorne, the physicist who assisted Nolan on the scientific aspects of Interstellar, shows us that the movie’s jaw-dropping events and stunning, never-before-attempted visuals are grounded in real science. Thorne shares his experiences working as the science adviser on the film and then moves on to the science itself. In chapters on wormholes, black holes, interstellar travel, and much more, Thorne’s scientific insights—many of them triggered during the actual scripting and shooting of Interstellar—describe the physical laws that govern our universe and the truly astounding phenomena that those laws make possible.Interstellar and all related characters and elements are trademarks of and © Warner Bros. Entertainment Inc. (s14).

Fields of Color: The theory that escaped Einstein


Rodney A. Brooks - 2010
    QFT is the only physics theory that makes sense and that dispels or resolves the paradoxes of relativity and quantum mechanics that have confused and mystified so many people.

Destination Mars: The Story of Our Quest to Conquer the Red Planet


Andrew May - 2017
    Half a century later, only robots have been to the Red Planet and our astronauts rarely venture beyond Earth orbit.Now Mars is back With everyone from Elon Musk to Ridley Scott and Donald Trump talking about it, interplanetary exploration is back on the agenda and Mars is once again the prime destination for future human expansion and colonisation. In Destination Mars, astrophysicist and science writer Andrew May traces the history of our fascination with the Red Planet and explores the science upon which a crewed mission would be based, from assembling a spacecraft in Earth orbit to surviving solar storms. With expert insight, he analyses the new space race and assesses what the future holds for human life on Mars.

101 Things You Don't Know About Science and No One Else Does Either


James S. Trefil - 1996
    In elegant, witty three-page summations, Dr. Trefil "makes sense of science for the rest of us" (Washington Post).

Big Bang: The Origin of the Universe


Simon Singh - 2004
    In this amazingly comprehensible history of the universe, Simon Singh decodes the mystery behind the Big Bang theory, lading us through the development of one of the most extraordinary, important, and awe-inspiring theories in science.

First Light: Switching on Stars at the Dawn of Time


Emma Chapman - 2020
    There's a lot for astronomers to be smug about. But when it comes to understanding how the Universe began and grew up we are literally in the dark ages. In effect, we are missing the first one billion years from the timeline of the Universe.This brief but far-reaching period in the Universe's history, known to astrophysicists as the 'Epoch of Reionisation', represents the start of the cosmos as we experience it today. The time when the very first stars burst into life, when darkness gave way to light. After hundreds of millions of years of dark, uneventful expansion, one by the one these stars suddenly came into being. This was the point at which the chaos of the Big Bang first began to yield to the order of galaxies, black holes and stars, kick-starting the pathway to planets, to comets, to moons, and to life itself.Incorporating the very latest research into this branch of astrophysics, this book sheds light on this time of darkness, telling the story of these first stars, hundreds of times the size of the Sun and a million times brighter, lonely giants that lived fast and died young in powerful explosions that seeded the Universe with the heavy elements that we are made of. Emma Chapman tells us how these stars formed, why they were so unusual, and what they can teach us about the Universe today. She also offers a first-hand look at the immense telescopes about to come on line to peer into the past, searching for the echoes and footprints of these stars, to take this period in the Universe's history from the realm of theoretical physics towards the wonder of observational astronomy.

The Higgs Boson and Beyond


Sean Carroll - 2015
    The hunt for the Higgs was the subject of wide media attention due to the cost of the project, the complexity of the experiment, and the importance of its result. And, when it was announced with great fanfare in 2012 that physicists has succeeded in creating and identifying this all-important new particle, the discovery was celebrated around the world.And yet, virtually no one who read that news could tell you what, exactly, the Higgs boson was, and why its discovery was so important that we had to spend 10 billion dollars and build the single largest and most complex device in the history of mankind in order to find it. When you understand the details, this story ranks as one of the most thrilling in the history of modern science.Award-winning theoretical physicist Sean Carroll, a brilliant researcher as well as a gifted speaker who excels in explaining scientific concepts to the public, is perfectly positioned to tell this story. In this 12-lecture masterpiece of scientific reporting, you'll learn everything you need to know to fully grasp the significance of this discovery, including the basics of quantum mechanics; the four forces that comprise the Standard Model of particle physics; how these forces are transmitted by fields and particles; and the importance of symmetry in physics.You also get an in-depth view of the Large Hadron Collider - the largest machine ever built, and the device responsible for finally revealing the concept of the Higgs boson as reality. By the end, you'll understand how the Higgs boson verifies the final piece in the Standard Model of particle physics, and how its discovery validates and deepens our understanding of the universe.

Pale Blue Dot: A Vision of the Human Future in Space


Carl Sagan - 1994
    This stirring book reveals how scientific discovery has altered our perception of who we are and where we stand, and challenges us to weigh what we will do with that knowledge. Photos, many in color.

Calculating the Cosmos: How Mathematics Unveils the Universe


Ian Stewart - 2016
    He describes the architecture of space and time, dark matter and dark energy, how galaxies form, why stars implode, how everything began, and how it's all going to end. He considers parallel universes, the fine-tuning of the cosmos for life, what forms extraterrestrial life might take, and the likelihood of life on Earth being snuffed out by an asteroid.Beginning with the Babylonian integration of mathematics into the study of astronomy and cosmology, Stewart traces the evolution of our understanding of the cosmos: How Kepler's laws of planetary motion led Newton to formulate his theory of gravity. How, two centuries later, tiny irregularities in the motion of Mars inspired Einstein to devise his general theory of relativity. How, eighty years ago, the discovery that the universe is expanding led to the development of the Big Bang theory of its origins. How single-point origin and expansion led cosmologists to theorize new components of the universe, such as inflation, dark matter, and dark energy. But does inflation explain the structure of today's universe? Does dark matter actually exist? Could a scientific revolution that will challenge the long-held scientific orthodoxy and once again transform our understanding of the universe be on the way? In an exciting and engaging style, Calculating the Cosmos is a mathematical quest through the intricate realms of astronomy and cosmology.

How to Change Your Mind: What the New Science of Psychedelics


Zhivko - 2018
    

The New Quantum Universe


Tony Hey - 2003
    Quantum paradoxes and the eventful life of Schroedinger's Cat are explained, along with the Many Universe explanation of quantum measurement in this newly revised edition. Updated throughout, the book also looks ahead to the nanotechnology revolution and describes quantum cryptography, computing and teleportation. Including an account of quantum mechanics and science fiction, this accessible book is geared to the general reader. Anthony Hey teaches at the University of Southampton, UK, and is the co-author of several books, including two with Patrick Walters, The Quantum Universe (Cambridge, 1987), and Einstein's Mirror (Cambridge, 1997). Patrick Walters is a Lecturer in Continuing Education at the University of Wales at Swansea. He co-ordinates the Physical Science Programme in DACE which includes the Astronomy Programme. His research interests include science education, and he also writes non-technical books on science for the general reader and beginning undergraduates. First Edition Pb (1987): 0-521-31845-9

The New Quotable Einstein


Albert Einstein - 2005
    Tens of thousands of readers have enjoyed The Quotable Einstein and The Expanded Quotable Einstein, with translations into twenty-two languages. This updated edition--which appears on the 100th anniversary of Einstein's Special Theory of Relativity and the 50th anniversary of Einstein's death--offers more than 300 new quotations, or over 1,200 altogether. Nearly all are by Einstein himself and a few are about the self-professed lone wolf Time magazine named Man of the Century at the turn of the millennium.The New Quotable Einstein also includes a new section, On Aging, and fresh material has been added to the appendix-from a touching account by Helen Dukas of Einstein's last days to a day-by-day summary of Johanna Fantova's telephone conversations with Einstein during the final year and a half of his life.Also included are a poem called Einstein, by Robert Service; and three virtually unknown verses to the song As Time Goes By (made famous in the movie Casablanca) that refer to Einstein. New photographs have been selected to introduce each section of the book.Through well-documented quotations and supplementary information, The New Quotable Einstein provides a bigger and better biographical account of this multifaceted man-as son, husband, father, lover, scientist, philosopher, aging widower, humanitarian, and friend. It shows us even more vividly why the real and imagined Einstein continues to fascinate people across the world into the twenty-first century.300-plus new quotations, more than 1,200 in allA day-by-day summary of Johanna Fantova's phone conversations with Einstein toward the end of his lifeA touching account of Einstein's last daysA new section, On AgingThree virtually unknown original verses of the song As Time Goes By (from the movie Casablanca) that refer to EinsteinRobert Service's poem Einstein-- "New Scientist"