Book picks similar to
Head First Java by Kathy Sierra


programming
java
computer-science
tech

Hadoop: The Definitive Guide


Tom White - 2009
    Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!

Deep Learning with Python


François Chollet - 2017
    It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.

Linux Kernel Development


Robert Love - 2003
    The book details the major subsystems and features of the Linux kernel, including its design, implementation, and interfaces. It covers the Linux kernel with both a practical and theoretical eye, which should appeal to readers with a variety of interests and needs. The author, a core kernel developer, shares valuable knowledge and experience on the 2.6 Linux kernel. Specific topics covered include process management, scheduling, time management and timers, the system call interface, memory addressing, memory management, the page cache, the VFS, kernel synchronization, portability concerns, and debugging techniques. This book covers the most interesting features of the Linux 2.6 kernel, including the CFS scheduler, preemptive kernel, block I/O layer, and I/O schedulers. The third edition of Linux Kernel Development includes new and updated material throughout the book:An all-new chapter on kernel data structuresDetails on interrupt handlers and bottom halvesExtended coverage of virtual memory and memory allocationTips on debugging the Linux kernelIn-depth coverage of kernel synchronization and lockingUseful insight into submitting kernel patches and working with the Linux kernel community

Mastering Bitcoin: Unlocking Digital Cryptocurrencies


Andreas M. Antonopoulos - 2014
    Whether you're building the next killer app, investing in a startup, or simply curious about the technology, this practical book is essential reading.Bitcoin, the first successful decentralized digital currency, is still in its infancy and it's already spawned a multi-billion dollar global economy. This economy is open to anyone with the knowledge and passion to participate. Mastering Bitcoin provides you with the knowledge you need (passion not included).This book includes:A broad introduction to bitcoin--ideal for non-technical users, investors, and business executivesAn explanation of the technical foundations of bitcoin and cryptographic currencies for developers, engineers, and software and systems architectsDetails of the bitcoin decentralized network, peer-to-peer architecture, transaction lifecycle, and security principlesOffshoots of the bitcoin and blockchain inventions, including alternative chains, currencies, and applicationsUser stories, analogies, examples, and code snippets illustrating key technical concepts

Python Data Science Handbook: Tools and Techniques for Developers


Jake Vanderplas - 2016
    Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Joel on Software


Joel Spolsky - 2004
    For years, Joel Spolsky has done exactly this at www.joelonsoftware.com. Now, for the first time, you can own a collection of the most important essays from his site in one book, with exclusive commentary and new insights from joel.

The Joy of Clojure


Michael Fogus - 2010
    It combines the nice features of a scripting language with the powerful features of a production environment—features like persistent data structures and clean multithreading that you'll need for industrial-strength application development.The Joy of Clojure goes beyond just syntax to show you how to write fluent and idiomatic Clojure code. You'll learn a functional approach to programming and will master Lisp techniques that make Clojure so elegant and efficient. The book gives you easy access to hard soft ware areas like concurrency, interoperability, and performance. And it shows you how great it can be to think about problems the Clojure way. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's InsideThe what and why of ClojureHow to work with macrosHow to do elegant application designFunctional programming idiomsWritten for programmers coming to Clojure from another programming background—no prior experience with Clojure or Lisp is required.

Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and One Quest for Transcendent Software


Scott Rosenberg - 2007
    Along the way, we encounter black holes, turtles, snakes, dragons, axe-sharpening, and yak-shaving—and take a guided tour through the theories and methods, both brilliant and misguided, that litter the history of software development, from the famous ‘mythical man-month’ to Extreme Programming. Not just for technophiles but for anyone captivated by the drama of invention, Dreaming in Code offers a window into both the information age and the workings of the human mind.

Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale


Neha Narkhede - 2017
    And how to move all of this data becomes nearly as important as the data itself. If you� re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you� ll learn Kafka� s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.Understand publish-subscribe messaging and how it fits in the big data ecosystem.Explore Kafka producers and consumers for writing and reading messagesUnderstand Kafka patterns and use-case requirements to ensure reliable data deliveryGet best practices for building data pipelines and applications with KafkaManage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasksLearn the most critical metrics among Kafka� s operational measurementsExplore how Kafka� s stream delivery capabilities make it a perfect source for stream processing systems

Purely Functional Data Structures


Chris Okasaki - 1996
    However, data structures for these languages do not always translate well to functional languages such as Standard ML, Haskell, or Scheme. This book describes data structures from the point of view of functional languages, with examples, and presents design techniques that allow programmers to develop their own functional data structures. The author includes both classical data structures, such as red-black trees and binomial queues, and a host of new data structures developed exclusively for functional languages. All source code is given in Standard ML and Haskell, and most of the programs are easily adaptable to other functional languages. This handy reference for professional programmers working with functional languages can also be used as a tutorial or for self-study.

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Programming Rust: Fast, Safe Systems Development


Jim Blandy - 2015
    Rust's modern, flexible types ensure your program is free of null pointer dereferences, double frees, dangling pointers, and similar bugs, all at compile time, without runtime overhead. In multi-threaded code, Rust catches data races at compile time, making concurrency much easier to use.Written by two experienced systems programmers, this book explains how Rust manages to bridge the gap between performance and safety, and how you can take advantage of it. Topics include:How Rust represents values in memory (with diagrams)Complete explanations of ownership, moves, borrows, and lifetimesCargo, rustdoc, unit tests, and how to publish your code on crates.io, Rust's public package repositoryHigh-level features like generic code, closures, collections, and iterators that make Rust productive and flexibleConcurrency in Rust: threads, mutexes, channels, and atomics, all much safer to use than in C or C++Unsafe code, and how to preserve the integrity of ordinary code that uses itExtended examples illustrating how pieces of the language fit together

Apprenticeship Patterns: Guidance for the Aspiring Software Craftsman


Dave Hoover - 2009
    To grow professionally, you also need soft skills and effective learning techniques. Honing those skills is what this book is all about. Authors Dave Hoover and Adewale Oshineye have cataloged dozens of behavior patterns to help you perfect essential aspects of your craft. Compiled from years of research, many interviews, and feedback from O'Reilly's online forum, these patterns address difficult situations that programmers, administrators, and DBAs face every day. And it's not just about financial success. Apprenticeship Patterns also approaches software development as a means to personal fulfillment. Discover how this book can help you make the best of both your life and your career. Solutions to some common obstacles that this book explores in-depth include:Burned out at work? "Nurture Your Passion" by finding a pet project to rediscover the joy of problem solving.Feeling overwhelmed by new information? Re-explore familiar territory by building something you've built before, then use "Retreat into Competence" to move forward again.Stuck in your learning? Seek a team of experienced and talented developers with whom you can "Be the Worst" for a while. "Brilliant stuff! Reading this book was like being in a time machine that pulled me back to those key learning moments in my career as a professional software developer and, instead of having to learn best practices the hard way, I had a guru sitting on my shoulder guiding me every step towards master craftsmanship. I'll certainly be recommending this book to clients. I wish I had this book 14 years ago!" -Russ Miles, CEO, OpenCredo

Refactoring to Patterns


Joshua Kerievsky - 2004
    In 1999, "Refactoring" revolutionized design by introducing an effective process for improving code. With the highly anticipated " Refactoring to Patterns ," Joshua Kerievsky has changed our approach to design by forever uniting patterns with the evolutionary process of refactoring.This book introduces the theory and practice of pattern-directed refactorings: sequences of low-level refactorings that allow designers to safely move designs to, towards, or away from pattern implementations. Using code from real-world projects, Kerievsky documents the thinking and steps underlying over two dozen pattern-based design transformations. Along the way he offers insights into pattern differences and how to implement patterns in the simplest possible ways.Coverage includes: A catalog of twenty-seven pattern-directed refactorings, featuring real-world code examples Descriptions of twelve design smells that indicate the need for this book s refactorings General information and new insights about patterns and refactoringDetailed implementation mechanics: how low-level refactorings are combined to implement high-level patterns Multiple ways to implement the same pattern and when to use each Practical ways to get started even if you have little experience with patterns or refactoring"Refactoring to Patterns" reflects three years of refinement and the insights of more than sixty software engineering thought leaders in the global patterns, refactoring, and agile development communities. Whether you re focused on legacy or greenfield development, this book will make you a better software designer by helping you learn how to make important design changes safely and effectively. "

The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws


Dafydd Stuttard - 2007
    The authors explain each category of vulnerability using real-world examples, screen shots and code extracts. The book is extremely practical in focus, and describes in detail the steps involved in detecting and exploiting each kind of security weakness found within a variety of applications such as online banking, e-commerce and other web applications. The topics covered include bypassing login mechanisms, injecting code, exploiting logic flaws and compromising other users. Because every web application is different, attacking them entails bringing to bear various general principles, techniques and experience in an imaginative way. The most successful hackers go beyond this, and find ways to automate their bespoke attacks. This handbook describes a proven methodology that combines the virtues of human intelligence and computerized brute force, often with devastating results.The authors are professional penetration testers who have been involved in web application security for nearly a decade. They have presented training courses at the Black Hat security conferences throughout the world. Under the alias "PortSwigger," Dafydd developed the popular Burp Suite of web application hack tools.