Computer Networking: A Top-Down Approach


James F. Kurose - 2000
    Building on the successful top-down approach of previous editions, this fourth edition continues with an early emphasis on application-layer paradigms and application programming interfaces, encouraging a hands-on experience with protocols and networking concepts.

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Semiconductor Device Fundamentals


Robert F. Pierret - 1995
    Problems are designed to progressively enhance MATLAB-use proficiency, so students need not be familiar with MATLAB at the start of your course. Program scripts that are answers to exercises in the text are available at no charge in electronic form (see Teaching Resources below). *Supplement and Review Mini-Chapters after each of the text's three parts contain an extensive review list of terms, test-like problem sets with answers, and detailed suggestions on supplemental reading to reinforce students' learning and help them prepare for exams. *Read-Only Chapters, strategically placed to provide a change of pace during the course, provide informative, yet enjoyable reading for students. *Measurement Details and Results samples offer students a realistic perspective on the seldom-perfect nature of device characteristics, contrary to the way they are often represented in introductory texts. Content Highlig

Probability, Random Variables and Stochastic Processes with Errata Sheet


Athanasios Papoulis - 2001
    Unnikrishna Pillai of Polytechnic University. The book is intended for a senior/graduate level course in probability and is aimed at students in electrical engineering, math, and physics departments. The authors' approach is to develop the subject of probability theory and stochastic processes as a deductive discipline and to illustrate the theory with basic applications of engineering interest. Approximately 1/3 of the text is new material--this material maintains the style and spirit of previous editions. In order to bridge the gap between concepts and applications, a number of additional examples have been added for further clarity, as well as several new topics.

The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge


William Poundstone - 1984
    Topics include the limits of knowledge, paradox of complexity, Maxwell's demon, Big Bang theory, much more. 1985 edition.

The 25 Cognitive Biases: Uncovering The Myth Of Rational Thinking


Charles Holm - 2015
    In reality this is not the case at all. We all have the tendency to overestimate our rationality to the point of denying reality. The many ways in which we do this are collectively called cognitive biases. Our brain may be the most complicated thinking machine but it is not without limitations. In our attempt to understand the world around us through our lens we simplify things and fall prey to cognitive biases. Sometimes these biases are caused by heuristics or mental shortcuts which help us reach quick judgments when we have little time. At other times our judgment is clouded by situational factors and inner motivations and emotions.However we are not completely helpless in this aspect. Knowing these biases exist can help us avoid them through conscious efforts. We need to be able to recognize these biases in our decision making. They are inevitable in most cases but they are not impossible to bypass.

Abnormal Psychology


Thomas F. Oltmanns - 1994
    It also includes a major study on suicide and case studies.