What Is Data Science?


Mike Loukides - 2011
    Five years ago, in What is Web 2.0, Tim O'Reilly said that "data is the next Intel Inside." But what does that statement mean? Why do we suddenly care about statistics and about data? This report examines the many sides of data science -- the technologies, the companies and the unique skill sets.The web is full of "data-driven apps." Almost any e-commerce application is a data-driven application. There's a database behind a web front end, and middleware that talks to a number of other databases and data services (credit card processing companies, banks, and so on). But merely using data isn't really what we mean by "data science." A data application acquires its value from the data itself, and creates more data as a result. It's not just an application with data; it's a data product. Data science enables the creation of data products.

Neural Networks and Deep Learning


Michael Nielsen - 2013
    The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.

Automate This: How Algorithms Came to Rule Our World


Christopher Steiner - 2012
    It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected. In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge. The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans. The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What hap­pens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others?  Who knows—maybe there’s a bot learning to do your job this minute.

Command Line Kung Fu: Bash Scripting Tricks, Linux Shell Programming Tips, and Bash One-liners


Jason Cannon - 2014
    

Machine Learning: The Art and Science of Algorithms That Make Sense of Data


Peter Flach - 2012
    Peter Flach's clear, example-based approach begins by discussing how a spam filter works, which gives an immediate introduction to machine learning in action, with a minimum of technical fuss. Flach provides case studies of increasing complexity and variety with well-chosen examples and illustrations throughout. He covers a wide range of logical, geometric and statistical models and state-of-the-art topics such as matrix factorisation and ROC analysis. Particular attention is paid to the central role played by features. The use of established terminology is balanced with the introduction of new and useful concepts, and summaries of relevant background material are provided with pointers for revision if necessary. These features ensure Machine Learning will set a new standard as an introductory textbook.

Mastering Blockchain: Distributed Ledgers, Decentralization and Smart Contracts Explained


Imran Bashir - 2017
    Get to grips with the underlying technical principles and implementations of blockchainBuild powerful applications using Ethereum to secure transactions and create smart contractsExplore cryptography, mine cryptocurrencies, and solve scalability issues with this comprehensive guide

Arduino For Dummies


John Nussey - 2013
    Arduino allows anyone, whether you're an artist, designer, programmer or hobbyist, tolearn about and play with electronics. Through this book you learnhow to build a variety of circuits that can sense or control thingsin the real world. Maybe you'll prototype your own product orcreate a piece of interactive artwork? This book equips you witheverything you'll need to build your own Arduino project, but whatyou make is up to you! If you're ready to bring your ideas into thereal world or are curious about the possibilities, this book is foryou. ? Learn by doing ? start building circuits and programmingyour Arduino with a few easy to follow examples - rightaway!? Easy does it ? work through Arduino sketches line by linein plain English, to learn of how a they work and how to write yourown? Solder on! ? Only ever used a breadboard in the kitchen?Don't know your soldering iron from a curling iron? No problem, you'll be prototyping in no time? Kitted out ? discover new and interesting hardware to makeyour Arduino into anything from a mobile phone to a geigercounter!? Become an Arduino savant ? learn all about functions, arrays, libraries, shields and other tools of the trade to takeyour Arduino project to the next level.? Get social ? teach your Arduino to communicate withsoftware running on a computer to link the physical world with thevirtual worldIt's hardware, it's software, it's fun! Start building the nextcool gizmo with Arduino and Arduino For Dummies.

R Packages


Hadley Wickham - 2015
    This practical book shows you how to bundle reusable R functions, sample data, and documentation together by applying author Hadley Wickham’s package development philosophy. In the process, you’ll work with devtools, roxygen, and testthat, a set of R packages that automate common development tasks. Devtools encapsulates best practices that Hadley has learned from years of working with this programming language. Ideal for developers, data scientists, and programmers with various backgrounds, this book starts you with the basics and shows you how to improve your package writing over time. You’ll learn to focus on what you want your package to do, rather than think about package structure. Learn about the most useful components of an R package, including vignettes and unit tests Automate anything you can, taking advantage of the years of development experience embodied in devtools Get tips on good style, such as organizing functions into files Streamline your development process with devtools Learn the best way to submit your package to the Comprehensive R Archive Network (CRAN) Learn from a well-respected member of the R community who created 30 R packages, including ggplot2, dplyr, and tidyr

Big Data: A Revolution That Will Transform How We Live, Work, and Think


Viktor Mayer-Schönberger - 2013
    “Big data” refers to our burgeoning ability to crunch vast collections of information, analyze it instantly, and draw sometimes profoundly surprising conclusions from it. This emerging science can translate myriad phenomena—from the price of airline tickets to the text of millions of books—into searchable form, and uses our increasing computing power to unearth epiphanies that we never could have seen before. A revolution on par with the Internet or perhaps even the printing press, big data will change the way we think about business, health, politics, education, and innovation in the years to come. It also poses fresh threats, from the inevitable end of privacy as we know it to the prospect of being penalized for things we haven’t even done yet, based on big data’s ability to predict our future behavior.In this brilliantly clear, often surprising work, two leading experts explain what big data is, how it will change our lives, and what we can do to protect ourselves from its hazards. Big Data is the first big book about the next big thing.www.big-data-book.com

The Intelligent Web: Search, Smart Algorithms, and Big Data


Gautam Shroff - 2013
    These days, linger over a Web page selling lamps, and they will turn up at the advertising margins as you move around the Internet, reminding you, tempting you to make that purchase. Search engines such as Google can now look deep into the data on the Web to pull out instances of the words you are looking for. And there are pages that collect and assess information to give you a snapshot of changing political opinion. These are just basic examples of the growth of Web intelligence, as increasingly sophisticated algorithms operate on the vast and growing amount of data on the Web, sifting, selecting, comparing, aggregating, correcting; following simple but powerful rules to decide what matters. While original optimism for Artificial Intelligence declined, this new kind of machine intelligence is emerging as the Web grows ever larger and more interconnected.Gautam Shroff takes us on a journey through the computer science of search, natural language, text mining, machine learning, swarm computing, and semantic reasoning, from Watson to self-driving cars. This machine intelligence may even mimic at a basic level what happens in the brain.

Machine Learning: An Algorithmic Perspective


Stephen Marsland - 2009
    The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.Highlights a Range of Disciplines and ApplicationsDrawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge."

Data Science For Dummies


Lillian Pierson - 2014
    Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of their organization’s massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you’ll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization. Provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis Details different data visualization techniques that can be used to showcase and summarize your data Explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques Includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark It’s a big, big data world out there – let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.

Python: For Beginners: A Crash Course Guide To Learn Python in 1 Week (coding, programming, web-programming, programmer)


Timothy C. Needham - 2017
    It is very readable and the stress many beginners face about memorizing arcane syntax typically presented by other programming languages will not affect you at all. Conversely, you will be able to concentrate on learning concepts and paradigms of programming. This book shall introduce you to an easy way to learn Python in just 7 days and in this time, be able to complete your own projects! By reading the book and implementing what you learn herein, you will realize just why major institutions like NASA, Google, Mozilla, Yahoo, Dropbox, IBM, Facebook and many others prefer to use python in their core products, services and business processes. Let

Behind Deep Blue: Building the Computer That Defeated the World Chess Champion


Feng-Hsiung Hsu - 2002
    Written by the man who started the adventure, Behind Deep Blue reveals the inside story of what happened behind the scenes at the two historic Deep Blue vs. Kasparov matches. This is also the story behind the quest to create the mother of all chess machines. The book unveils how a modest student project eventually produced a multimillion dollar supercomputer, from the development of the scientific ideas through technical setbacks, rivalry in the race to develop the ultimate chess machine, and wild controversies to the final triumph over the world's greatest human player.In nontechnical, conversational prose, Feng-hsiung Hsu, the system architect of Deep Blue, tells us how he and a small team of fellow researchers forged ahead at IBM with a project they'd begun as students at Carnegie Mellon in the mid-1980s: the search for one of the oldest holy grails in artificial intelligence--a machine that could beat any human chess player in a bona fide match. Back in 1949 science had conceived the foundations of modern chess computers but not until almost fifty years later--until Deep Blue--would the quest be realized.Hsu refutes Kasparov's controversial claim that only human intervention could have allowed Deep Blue to make its decisive, "uncomputerlike" moves. In riveting detail he describes the heightening tension in this war of brains and nerves, the "smoldering fire" in Kasparov's eyes. Behind Deep Blue is not just another tale of man versus machine. This fascinating book tells us how man as genius was given an ultimate, unforgettable run for his mind, no, not by the genius of a computer, but of man as toolmaker.

The Art and Science of Java


Eric S. Roberts - 2007
    By following the recommendations of the Association of Computing Machinery's Java Task Force, this first edition text adopts a modern objects-first approach that introduces readers to useful hierarchies from the very beginning.KEY TOPICS: Introduction; Programming by Example; Expressions; Statement Forms; Methods; Objects and Classes; Objects and Memory; Strings and Characters; Object-Oriented Graphics; Event-Driven Programs; Arrays and ArrayLists; Searching and Sorting; Collection Classes; Looking Ahead.MARKET: A modern objects-first approach to the Java programming language that introduces readers to useful class hierarchies from the very beginning.