Book picks similar to
Statistical Design by George Casella


statistics
mathematics
statistical-science
62-statistics-and-statistical

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

The Great Book of Riddles: 250 Magnificent Riddles, Puzzles and Brain Teasers


Peter Keyne - 2014
    There are classical logic puzzles, lateral thinking puzzles, “who am I?” riddles, mathematical brain teasers, word ladders, ditloids, and a large selection of illustrated pen and paper, coins, cups, and toothpicks puzzles (please view the preview of this book for a full listing). This is the first time a collection of such breadth has been compiled and formatted especially for Kindle devices. The puzzles have been carefully organized into 25 chapters, and each question is hyperlinked to its solution, to provide utmost ease of navigation. Alongside the world’s most famous riddles, are some lesser known gems, and some brand new puzzles, in print here for the first time. Our aim was to create a definitive compendium of riddles and puzzles to bring enjoyment to people of all ages. We hope you will enjoy unraveling them as much as we enjoyed creating and editing them. Here are a handful of sample riddles: Outside the Box Riddles: You need to divide a round birthday cake into eight pieces, so each of your guests will have something to eat. How can you do this by making only three straight cuts with a knife, and without moving any of the pieces? The king’s two bodyguards developed an ingenious method for assuring the king’s safety. With the king standing between them, they would face in opposite directions; one looking to the west and the other to the east, but at the same time, and without the use of any reflective surfaces, they would both be able to observe the king clearly. How was this possible? Pure Logic Riddles: There are two glasses. One contains water, and the other contains an equal quantity of wine. A teaspoon of water is removed and mixed into the glass of wine. A teaspoon of the wine-water mixture is then removed and mixed into the glass of water. Which of the mixtures is now purer? The sorcerer’s tower was enchanted in such a way that it was able to build itself. Bricks, slates, tiles, and panes of glass, all flew to it of their own accord and danced into position. The tower doubled in size every day until after 100 days it reached a height that provided fine views over the entire realm. How many days did the tower take to reach half its full height? Lateral Thinking Puzzles: Five men are going to church. It starts to rain, and four of the men begin to run. When they arrive at the church, the four men who ran are soaking wet, whereas the fifth man, who didn’t run, is completely dry. How is this possible? Think Twice Riddles: If you are running a race, and you overtake the person in second place, what place do you move into? Word Riddles: SOS is read the same forwards, backwards, and even upside-down. What four-letter word also shares these properties? Number Puzzlers: How many letters are there in the answer to this question? You have an opportunity to buy a hen. In fact, you have been offered a choice between two quite remarkable animals. One of the hens produces six dozen dozen eggs per month, and the other produces a half dozen dozen. Admittedly, both seem impressive. Does it matter which hen you choose? Traditional Poetic Riddles: Five creatures cross a field of snow; But leave a single track behind Whose loops and bows are soon, I know, Unravelled by the mind. Coins, Cups, and Toothpicks Illustrated Riddles: A coin is dropped into an empty bottle and a cork is then inserted in the neck of the bottle. How is it possible to remove the coin without taking out the cork, or breaking the bottle?

Statistical Methods for the Social Sciences


Alan Agresti - 1986
    No previous knowledge of statistics is assumed, and mathematical background is assumed to be minimal (lowest-level high-school algebra). This text may be used in a one or two course sequence. Such sequences are commonly required of social science graduate students in sociology, political science, and psychology. Students in geography, anthropology, journalism, and speech also are sometimes required to take at least one statistics course.

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Machine Learning: An Algorithmic Perspective


Stephen Marsland - 2009
    The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.Highlights a Range of Disciplines and ApplicationsDrawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge."

Using Econometrics: A Practical Guide


A.H. Studenmund - 1987
    "Using Econometrics: A Practical Guide "provides readers with a practical introduction that combines single-equation linear regression analysis with real-world examples and exercises. This text also avoids complex matrix algebra and calculus, making it an ideal text for beginners. New problem sets and added support make "Using Econometrics" modern and easier to use.

Computational Complexity


Sanjeev Arora - 2007
    Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science


Bradley Efron - 2016
    'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS


John K. Kruschke - 2010
    Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884            0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke

Causal Inference in Statistics: A Primer


Judea Pearl - 2016
    Judea Pearl presents a book ideal for beginners in statistics, providing a comprehensive introduction to the field of causality. Examples from classical statistics are presented throughout to demonstrate the need for causality in resolving decision-making dilemmas posed by data. Causal methods are also compared to traditional statistical methods, whilst questions are provided at the end of each section to aid student learning.

R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics


Paul Teetor - 2011
    The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression.Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you're a beginner, R Cookbook will help get you started. If you're an experienced data programmer, it will jog your memory and expand your horizons. You'll get the job done faster and learn more about R in the process.Create vectors, handle variables, and perform other basic functionsInput and output dataTackle data structures such as matrices, lists, factors, and data framesWork with probability, probability distributions, and random variablesCalculate statistics and confidence intervals, and perform statistical testsCreate a variety of graphic displaysBuild statistical models with linear regressions and analysis of variance (ANOVA)Explore advanced statistical techniques, such as finding clusters in your dataWonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language--one practical example at a time.--Jeffrey Ryan, software consultant and R package author

Introduction to Graph Theory


Douglas B. West - 1995
    Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.

Chaos and Fractals: New Frontiers of Science


Heinz-Otto Peitgen - 1992
    At the time we were hoping that our approach of writing a book which would be both accessible without mathematical sophistication and portray these exiting new fields in an authentic manner would find an audience. Now we know it did. We know from many reviews and personal letters that the book is used in a wide range of ways: researchers use it to acquaint themselves, teachers use it in college and university courses, students use it for background reading, and there is also a substantial audience of lay people who just want to know what chaos and fractals are about. Every book that is somewhat technical in nature is likely to have a number of misprints and errors in its first edition. Some of these were caught and brought to our attention by our readers. One of them, Hermann Flaschka, deserves to be thanked in particular for his suggestions and improvements. This second edition has several changes. We have taken out the two appendices from the firstedition. At the time of the first edition Yuval Fishers contribution, which we published as an appendix was probably the first complete expository account on fractal image compression. Meanwhile, Yuvals book Fractal Image Compression: Theory and Application appeared and is now the publication to refer to.

Dead Men Walking


Bill Wallace - 2010
    What is it like to live out your days inside one of the toughest prisons,knowing you'll never again see beyond the exercise yard?Is it really possible to make friends or form relationships inside?What should you do if you've been sentenced to die for a crime you did not commit?This book examines the life-stories of men who claim to be innocent, men who were eventually proven innocent and those who are so dangerous that life simply has to mean life.CONTENTS:PART ONE : LIFERS including Machine Gun Kelly, The Bostons Strangler, Charles Manson, Son of Sam, The Yorkshire Ripper, Dennis Nilsen, Jeffrey Dahmer PART TWO : HIGH PROFILE EXECUTIONS including Julius and Ethel Rosenberg, Derek Bentley, The Night Caller, James Hanratty, Gary Gilmore, Ted Bundy, John Wayne Gacy PART THREE : DEATH ROW USA including Ray Krone, Nick Yarris, Richard Allen Davis, Kenny Richey, Michael Morales, Richard Ramirez, Karl ChamberlainPART FOUR : WOMEN ON DEATH ROW including Ruth Snyder, Ruth Ellis, Velma Barfield, Aileen Wuornos