Algorithms Illuminated (Part 1): The Basics


Tim Roughgarden - 2017
    Their applications range from network routing and computational genomics to public-key cryptography and database system implementation. Studying algorithms can make you a better programmer, a clearer thinker, and a master of technical interviews. Algorithms Illuminated is an accessible introduction to the subject---a transcript of what an expert algorithms tutor would say over a series of one-on-one lessons. The exposition is rigorous but emphasizes the big picture and conceptual understanding over low-level implementation and mathematical details. Part 1 of the book series covers asymptotic analysis and big-O notation, divide-and-conquer algorithms and the master method, randomized algorithms, and several famous algorithms for sorting and selection.

Algorithm Design


Jon Kleinberg - 2005
    The book teaches a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.

Learn Java in One Day and Learn It Well: Java for Beginners with Hands-on Project


Jamie Chan - 2016
    Learn Java Programming Fast with a unique Hands-On Project. Book 4 of the Learn Coding Fast Series. Covers Java 8. Have you always wanted to learn computer programming but are afraid it'll be too difficult for you? Or perhaps you know other programming languages but are interested in learning the Java language fast? This book is for you. You no longer have to waste your time and money trying to learn Java from boring books that are 600 pages long, expensive online courses or complicated Java tutorials that just leave you more confused and frustrated. What this book offers... Java for Beginners Complex concepts are broken down into simple steps to ensure that you can easily master the Java language even if you have never coded before. Carefully Chosen Java Examples Examples are carefully chosen to illustrate all concepts. In addition, the output for all examples are provided immediately so you do not have to wait till you have access to your computer to test the examples. Careful selection of topics Topics are carefully selected to give you a broad exposure to Java, while not overwhelming you with information overload. These topics include object-oriented programming concepts, error handling techniques, file handling techniques and more. In addition, new features in Java (such as lambda expressions and default methods etc) are also covered so that you are always up to date with the latest advancement in the Java language. Learn The Java Programming Language Fast Concepts are presented in a "to-the-point" style to cater to the busy individual. You no longer have to endure boring and lengthy Java textbooks that simply puts you to sleep. With this book, you can learn Java fast and start coding immediately. How is this book different... The best way to learn Java is by doing. This book includes a unique project at the end of the book that requires the application of all the concepts taught previously. Working through the project will not only give you an immense sense of achievement, it’ll also help you retain the knowledge and master the language. Are you ready to dip your toes into the exciting world of Java coding? This book is for you. Click the BUY button and download it now. What you'll learn: Introduction to Java - What is Java? - What software do you need to code Java programs? - How to install and run JDK and Netbeans? Data types and Operators - What are the eight primitive types in Java? - What are arrays and lists? - How to format Java strings - What is a primitive type vs reference type? - What are the common Java operators? Object Oriented Programming - What is object oriented programming? - How to write your own classes - What are fields, methods and constructors? - What is encapsulation, inheritance and polymorphism? - What is an abstract class and interface? Controlling the Flow of a Program - What are condition statements? - How to use control flow statements in Java - How to handle errors and exceptions - How to throw your own exception

Introducing Windows 10 for IT Professionals


Ed Bott - 2015
    This guide introduces new features and capabilities, providing a practical, high-level overview for IT professionals ready to begin deployment planning now. This book is a preview, a work in progress about a work in progress. It offers a snapshot of the Windows 10 Technical Preview as of April 2015, on the eve of the BUILD Developers’ Conference in San Francisco.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Pattern Classification


David G. Stork - 1973
    Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

An Introduction to Genetic Algorithms


Melanie Mitchell - 1996
    This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting general purpose nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

TCP/IP Protocol Suite


Behrouz A. Forouzan - 1999
    TCP/IP Protocol Suite teaches students and professionals, with no prior knowledge of TCP/IP, everything they need to know about the subject. This comprehensive book uses hundreds of figures to make technical concepts easy to grasp, as well as many examples, which help tie the material to the real-world. The second edition of TCP/IP Protocol Suite has been fully updated to include all of the recent technology changes in the field. Many new chapters have been added such as one on Mobile IP, Multimedia and Internet, Network Security, and IP over ATM. Additionally, out-of-date material has been overhauled to reflect recent changes in technology.

More Proficient Motorcycling: Mastering the Ride


David L. Hough - 2003
    Explains the dynamics of safe motorcycling, including ways to become a better rider, navigating the roads, and lifesaving tips to remember while riding.

Machine Learning for Hackers


Drew Conway - 2012
    Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data

Learning Spark: Lightning-Fast Big Data Analysis


Holden Karau - 2013
    How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables

Visualizing Data: Exploring and Explaining Data with the Processing Environment


Ben Fry - 2007
    Using a downloadable programming environment developed by the author, Visualizing Data demonstrates methods for representing data accurately on the Web and elsewhere, complete with user interaction, animation, and more. How do the 3.1 billion A, C, G and T letters of the human genome compare to those of a chimp or a mouse? What do the paths that millions of visitors take through a web site look like? With Visualizing Data, you learn how to answer complex questions like these with thoroughly interactive displays. We're not talking about cookie-cutter charts and graphs. This book teaches you how to design entire interfaces around large, complex data sets with the help of a powerful new design and prototyping tool called "Processing". Used by many researchers and companies to convey specific data in a clear and understandable manner, the Processing beta is available free. With this tool and Visualizing Data as a guide, you'll learn basic visualization principles, how to choose the right kind of display for your purposes, and how to provide interactive features that will bring users to your site over and over. This book teaches you:The seven stages of visualizing data -- acquire, parse, filter, mine, represent, refine, and interact How all data problems begin with a question and end with a narrative construct that provides a clear answer without extraneous details Several example projects with the code to make them work Positive and negative points of each representation discussed. The focus is on customization so that each one best suits what you want to convey about your data set The book does not provide ready-made "visualizations" that can be plugged into any data set. Instead, with chapters divided by types of data rather than types of display, you'll learn how each visualization conveys the unique properties of the data it represents -- why the data was collected, what's interesting about it, and what stories it can tell. Visualizing Data teaches you how to answer questions, not simply display information.

Lean Software Development: An Agile Toolkit


Mary Poppendieck - 2003
    Along the way, they introduce 22 thinking tools that can help you customize the right agile practices for any environment.Better, cheaper, faster software development. You can have all three-if you adopt the same lean principles that have already revolutionized manufacturing, logistics and product development.Iterating towards excellence: software development as an exercise in discovery Managing uncertainty: decide as late as possible by building change into the system. Compressing the value stream: rapid development, feedback, and improvement Empowering teams and individuals without compromising coordination Software with integrity: promoting coherence, usability, fitness, maintainability, and adaptability How to see the whole-even when your developers are scattered across multiple locations and contractors Simply put, Lean Software Development helps you refocus development on value, flow, and people-so you can achieve breakthrough quality, savings, speed, and business alignment.

Data Structures and Algorithms Made Easy in Java: 700 Data Structure and Algorithmic Puzzles


Narasimha Karumanchi - 2011
    Success key books for: Programming puzzles for interviews Campus Preparation Degree/Masters Course Preparation Instructor's GATE Preparation Big job hunters: Microsoft, Google, Amazon, Yahoo, Flip Kart, Adobe, IBM Labs, Citrix, Mentor Graphics, NetApp, Oracle, Webaroo, De-Shaw, Success Factors, Face book, McAfee and many more Reference Manual for working people

Metaprogramming Elixir


Chris McCord - 2015
    Maybe you’ve played with the basics or written a few macros. Now you want to take it to the next level. This book is a guided series of metaprogramming tutorials that take you step by step to metaprogramming mastery. You’ll extend Elixir with powerful features and write faster, more maintainable programs in ways unmatched by other languages.You’ll start with the basics of Elixir’s metaprogramming system and find out how macros interact with Elixir’s abstract format. Then you’ll extend Elixir with your own first-class features, write a testing framework, and discover how Elixir treats source code as building blocks, rather than rote lines of instructions. You’ll continue your journey by using advanced code generation to create essential libraries in strikingly few lines of code. Finally, you’ll create domain-specific languages and learn when and where to apply your skills effectively.When you’re done, you will have mastered metaprogramming, gained insights into Elixir’s internals, and have the confidence to leverage macros to their full potential in your own projects.