Lectures on Quantum Mechanics


Paul A.M. Dirac - 1964
    The remaining lectures build on that idea, examining the possibility of building a relativistic quantum theory on curved surfaces or flat surfaces.

Einstein's Clocks, Poincaré's Maps: Empires of Time


Peter Galison - 2003
    And two giants at the foundations of modern science were converging, step-by-step, on the answer: Albert Einstein, an young, obscure German physicist experimenting with measuring time using telegraph networks and with the coordination of clocks at train stations; and the renowned mathematician Henri Poincaré, president of the French Bureau of Longitude, mapping time coordinates across continents. Each found that to understand the newly global world, he had to determine whether there existed a pure time in which simultaneity was absolute or whether time was relative.Esteemed historian of science Peter Galison has culled new information from rarely seen photographs, forgotten patents, and unexplored archives to tell the fascinating story of two scientists whose concrete, professional preoccupations engaged them in a silent race toward a theory that would conquer the empire of time.

Sonic Wonderland: A Scientific Odyssey of Sound


Trevor J. Cox - 2014
    Until the day he heard something so astonishing that he had an epiphany: rather than quashing rare or bizarre sounds, we should be celebrating these sonic treasures.This is the story of his investigation into the mysteries of these Sonic Wonders of the World. In the Mojave Desert he finds sand dunes that sing. In France he discovers an echo that tells jokes. In California he drives down a musical road that plays the William Tell Overture. In Cathedrals across the world he learns how acoustics changed the history of the Church.Touching on physics, music, archaeology, neuroscience, biology, and design, Cox explains how sound is made and altered by the environment and how our body reacts to peculiar noises – from the exotic sonic wonders he encounters on his journey, or the equally unique and surprising sounds of our everyday environment.In a world dominated by the visual, Sonic Wonderland encourages us to become better listeners and to open our ears to the glorious cacophony around us. Listen to a selection of astonishing sounds here: https://soundcloud.com/sonicwonderland

Space-time and beyond : toward an explanation of the unexplainable


Bob Toben - 1975
    Captioned cartoon drawings offering an overview of universal order as they deal with various phenomena are combined with scientific commentary

Q is for Quantum


Terry Rudolph - 2017
    ENTANGLEMENT. REALITY. Books containing these three words are typically fluff or incomprehensible; this one is not. "Q is for Quantum" teaches a theory at the forefront of modern physics to an audience presumed to already know only basic arithmetic. Topics covered range from the practical (new technologies we can expect soon) to the foundational (old ideas that attempt to make sense of the theory). The theory is built up precisely and quantitatively. Deceptively vague jargon and analogies are avoided, and mysterious features of the theory are made explicit and not skirted. The tenacious reader will emerge with a better technical understanding of why we are troubled by this theory than that possessed by many professional physicists.

Family Secrets


Rona Jaffe - 1974
    A saga of the Saffron family and begins in 1902.Adam, a young immigrant sets out to make a fortune and found a dynasty whose center is Windflower, the great estate that Adam created to keep his growing family around him forever.

Einstein's Theory of Relativity


Max Born - 1962
    This is such a book. Max Born is a Nobel Laureate (1955) and one of the world's great physicists: in this book he analyzes and interprets the theory of Einsteinian relativity. The result is undoubtedly the most lucid and insightful of all the books that have been written to explain the revolutionary theory that marked the end of the classical and the beginning of the modern era of physics.The author follows a quasi-historical method of presentation. The book begins with a review of the classical physics, covering such topics as origins of space and time measurements, geometric axioms, Ptolemaic and Copernican astronomy, concepts of equilibrium and force, laws of motion, inertia, mass, momentum and energy, Newtonian world system (absolute space and absolute time, gravitation, celestial mechanics, centrifugal forces, and absolute space), laws of optics (the corpuscular and undulatory theories, speed of light, wave theory, Doppler effect, convection of light by matter), electrodynamics (including magnetic induction, electromagnetic theory of light, electromagnetic ether, electromagnetic laws of moving bodies, electromagnetic mass, and the contraction hypothesis). Born then takes up his exposition of Einstein's special and general theories of relativity, discussing the concept of simultaneity, kinematics, Einstein's mechanics and dynamics, relativity of arbitrary motions, the principle of equivalence, the geometry of curved surfaces, and the space-time continuum, among other topics. Born then points out some predictions of the theory of relativity and its implications for cosmology, and indicates what is being sought in the unified field theory.This account steers a middle course between vague popularizations and complex scientific presentations. This is a careful discussion of principles stated in thoroughly acceptable scientific form, yet in a manner that makes it possible for the reader who has no scientific training to understand it. Only high school algebra has been used in explaining the nature of classical physics and relativity, and simple experiments and diagrams are used to illustrate each step. The layman and the beginning student in physics will find this an immensely valuable and usable introduction to relativity. This Dover 1962 edition was greatly revised and enlarged by Dr. Born.

Gravitational Waves: How Einstein’s Spacetime Ripples Reveal the Secrets of the Universe


Brian Clegg - 2018
    But gravitational waves – ripples in the fabric of space and time – are unrelenting, passing through barriers that stop light dead.At the two 4-kilometre long LIGO observatories in the US, scientists developed incredibly sensitive detectors, capable of spotting a movement 100 times smaller than the nucleus of an atom. In 2015 they spotted the ripples produced by two black holes spiralling into each other, setting spacetime quivering.This was the first time black holes had ever been directly detected – and it promises far more for the future of astronomy. Brian Clegg presents a compelling story of human technical endeavour and a new, powerful path to understand the workings of the universe.Brian Clegg’s most recent books are The Reality Frame (Icon, 2017), What Colour is the Sun? (Icon, 2016) and Ten Billion Tomorrows (St Martin’s Press, 2016). His Dice World and A Brief History of Infinity were both longlisted for the Royal Society Prize for Science Books. He has also written Big Data for the Hot Science series. Brian has written for numerous publications including The Wall Street Journal, Nature, BBC Focus, Physics World, The Times and The Observer. Brian is editor of popularscience.co.uk and blogs at brianclegg.blogspot.com.

Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures


Richard P. Feynman - 1986
    This book details how two distinguished physicists and Nobel laureates have explored this theme in two lectures given in Cambridge, England, in 1986 to commemorate the famous British physicist Paul Dirac. Given for nonspecialists and undergraduates, the talks transcribed in Elementary Particles and the Laws of Physics focus on the fundamental problems of physics and the present state of our knowledge. Professor Feynman examines the nature of antiparticles, and in particular the relationship between quantum spin and statistics. Professor Weinberg speculates on how Einstein's theory of gravitation might be reconciled with quantum theory in the final law of physics. Highly accessible, deeply thought provoking, this book will appeal to all those interested in the development of modern physics.

Subtle Is the Lord: The Science and the Life of Albert Einstein


Abraham Pais - 1982
    In this new major work Abraham Pais, himself an eminent physicist who worked alongside Einstein in the post-war years, traces the development of Einstein's entire oeuvre. This is the first book which deal comprehensively and in depth with Einstein's science, both the successes and the failures.Running through the book is a completely non-scientific biography (identified in the table of contents by italic type) including many letters which appear in English for the first time, as well as other information not published before.Throughout the preparation of this book, Pais has had complete access to the Einstein Archives (now in the possession of the Hebrew University) and the invaluable guidance of the late Helen Dukas--formerly Einstein's private secretary.

Quantum Mechanics: Concepts and Applications


Nouredine Zettili - 2001
    It combines the essential elements of the theory with the practical applications. Containing many examples and problems with step-by-step solutions, this cleverly structured text assists the reader in mastering the machinery of quantum mechanics. * A comprehensive introduction to the subject * Includes over 65 solved examples integrated throughout the text * Includes over 154 fully solved multipart problems * Offers an indepth treatment of the practical mathematical tools of quantum mechanics * Accessible to teachers as well as students

Gravity: An Introduction to Einstein's General Relativity


James B. Hartle - 2002
    Using a "physics first" approach to the subject, renowned relativist James B. Hartle provides a fluent and accessible introduction that uses a minimum of new mathematics and is illustrated with a wealth of exciting applications. KEY TOPICS: The emphasis is on the exciting phenomena of gravitational physics and the growing connection between theory and observation. The Global Positioning System, black holes, X-ray sources, pulsars, quasars, gravitational waves, the Big Bang, and the large scale structure of the universe are used to illustrate the widespread role of how general relativity describes a wealth of everyday and exotic phenomena. MARKET: For anyone interested in physics or general relativity.

The Particle Zoo: The Search for the Fundamental Nature of Reality


Gavin Hesketh - 2016
    Concisely and with a rare clarity, he demystifies how we are uncovering the inner workings of the universe and heading towards the next scientific revolution.Why are atoms so small? How did the Higgs boson save the universe? And is there a Theory of Everything? The Particle Zoo answers these and many other profound questions, and explains the big ideas of Quantum Physics, String Theory, The Big Bang and Dark Matter... and, ultimately, what we know about the true, fundamental nature of reality.

3,000 Solved Problems in Physics


Alvin Halpern - 1988
    Contains 3000 solved problems with solutions, solved problems; an index to help you quickly locate the types of problems you want to solve; problems like those you'll find on your exams; techniques for choosing the correct approach to problems; and guidance toward efficient solutions.

Nickel: A Romantic Suspense Novel (Blackwood Elements Book 9)


Elise Noble - 2020
    What if the perfect man has been under her nose the whole time?Nickel is a standalone romantic suspense novel in the Blackwood Elements series - no cliffhanger!