The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory


Brian Greene - 1999
    Brian Greene, one of the world's leading string theorists, peels away the layers of mystery surrounding string theory to reveal a universe that consists of eleven dimensions, where the fabric of space tears and repairs itself, and all matter—from the smallest quarks to the most gargantuan supernovas—is generated by the vibrations of microscopically tiny loops of energy.Today physicists and mathematicians throughout the world are feverishly working on one of the most ambitious theories ever proposed: superstring theory. String theory, as it is often called, is the key to the Unified Field Theory that eluded Einstein for more than thirty years. Finally, the century-old antagonism between the large and the small-General Relativity and Quantum Theory-is resolved. String theory proclaims that all of the wondrous happenings in the universe, from the frantic dancing of subatomic quarks to the majestic swirling of heavenly galaxies, are reflections of one grand physical principle and manifestations of one single entity: microscopically tiny vibrating loops of energy, a billionth of a billionth the size of an atom. In this brilliantly articulated and refreshingly clear book, Greene relates the scientific story and the human struggle behind twentieth-century physics' search for a theory of everything.Through the masterful use of metaphor and analogy, The Elegant Universe makes some of the most sophisticated concepts ever contemplated viscerally accessible and thoroughly entertaining, bringing us closer than ever to understanding how the universe works.

All the Mathematics You Missed


Thomas A. Garrity - 2001
    This book will offer students a broad outline of essential mathematics and will help to fill in the gaps in their knowledge. The author explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The topics include linear algebra, vector calculus, differential and analytical geometry, real analysis, point-set topology, probability, complex analysis, set theory, algorithms, and more. An annotated bibliography offers a guide to further reading and to more rigorous foundations.

The Where, the Why, and the How: 75 Artists Illustrate Wondrous Mysteries of Science


Matt LaMothe - 2012
    Inside these pages some of the biggest (and smallest) mysteries of the natural world are explained in essays by real working scientists, which are then illustrated by artists given free rein to be as literal or as imaginative as they like. The result is a celebration of the wonder that inspires every new discovery. Featuring work by such contemporary luminaries as Lisa Congdon, Jen Corace, Neil Farber, Susie Ghahremani, Jeremyville, and many more, this is a work of scientific and artistic exploration to pique the interest of both the intellectually and imaginatively curious.

A Mathematical Introduction to Logic


Herbert B. Enderton - 1972
    The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets.

The Numbers Game: The Commonsense Guide to Understanding Numbers in the News, in Politics, and in Life


Michael Blastland - 2008
    Drawing on their hugely popular BBC Radio 4 show More or Less,, journalist Michael Blastland and internationally known economist Andrew Dilnot delight, amuse, and convert American mathphobes by showing how our everyday experiences make sense of numbers. The radical premise of The Numbers Game is to show how much we already know, and give practical ways to use our knowledge to become cannier consumers of the media. In each concise chapter, the authors take on a different theme—such as size, chance, averages, targets, risk, measurement, and data—and present it as a memorable and entertaining story. If you’ve ever wondered what “average” really means, whether the scare stories about cancer risk should convince you to change your behavior, or whether a story you read in the paper is biased (and how), you need this book. Blastland and Dilnot show how to survive and thrive on the torrent of numbers that pours through everyday life. It’s the essential guide to every cause you love or hate, and every issue you follow, in the language everyone uses.

Brain Candy: Science, Paradoxes, Puzzles, Logic, and Illogic to Nourish Your Neurons


Garth Sundem - 2010
    Feed Your Brain   Tastier than a twizzler yet more protein-packed than a spinach smoothie, Brain Candy is guaranteed to entertain your brain—even as it reveals hundreds of secrets behind what’s driving that electric noodle inside your skull.    These delicious and nutritious pages are packed with bits of bite-sized goodness swiped from the bleeding edge of brain science (including the reason why reading these words is changing your hippocampus at this very moment!) Shelved alongside these succulent neurological nuggets are challenging puzzles and paradoxes, eye-opening perception tests and hacks, fiendish personality quizzes and genius testers, and a grab bag of recurring treats including Eye Hacks, Algebraic Eight Ball, iDread, Wild Kingdom, and Logic of Illogic.     Should you look between these covers and inhale the deliciously cherry-flavored scents of knowledge within, you will grow your grey matter while discovering:  • Why you should be writing bad poetry• The simple keys to brain training• What trust smells like  • The origins of human morality• Why expensive wine always tastes better• The truth about brain sweat • How your diet might be making you dumb• The secrets of game theory• Why economists hate psychology • The mental benefits of coffee and cigarettes • How to really spot a liar• Why you can’t make me eat pie• The benefits of daydreaming • Four simple secrets to persuasion• Why your barin’s fzzuy ligoc alowls you to raed this• How to brainwash friends and family• The science of body language• What pigeons know about art   …And much, much more.

Theory of Games and Economic Behavior


John von Neumann - 1944
    What began more than sixty years ago as a modest proposal that a mathematician and an economist write a short paper together blossomed, in 1944, when Princeton University Press published Theory of Games and Economic Behavior. In it, John von Neumann and Oskar Morgenstern conceived a groundbreaking mathematical theory of economic and social organization, based on a theory of games of strategy. Not only would this revolutionize economics, but the entirely new field of scientific inquiry it yielded--game theory--has since been widely used to analyze a host of real-world phenomena from arms races to optimal policy choices of presidential candidates, from vaccination policy to major league baseball salary negotiations. And it is today established throughout both the social sciences and a wide range of other sciences.This sixtieth anniversary edition includes not only the original text but also an introduction by Harold Kuhn, an afterword by Ariel Rubinstein, and reviews and articles on the book that appeared at the time of its original publication in the New York Times, tthe American Economic Review, and a variety of other publications. Together, these writings provide readers a matchless opportunity to more fully appreciate a work whose influence will yet resound for generations to come.

Symmetry: The Ordering Principle


David G. Wade - 2006
    In this little book Welsh writer and artist David Wade paints a picture of one of the most elusive and pervasive concepts known to man.

Lost in Math: How Beauty Leads Physics Astray


Sabine Hossenfelder - 2018
    Whether pondering black holes or predicting discoveries at CERN, physicists believe the best theories are beautiful, natural, and elegant, and this standard separates popular theories from disposable ones. This is why, Sabine Hossenfelder argues, we have not seen a major breakthrough in the foundations of physics for more than four decades. The belief in beauty has become so dogmatic that it now conflicts with scientific objectivity: observation has been unable to confirm mindboggling theories, like supersymmetry or grand unification, invented by physicists based on aesthetic criteria. Worse, these "too good to not be true" theories are actually untestable and they have left the field in a cul-de-sac. To escape, physicists must rethink their methods. Only by embracing reality as it is can science discover the truth.

The Seven Pillars of Statistical Wisdom


Stephen M. Stigler - 2016
    It allows one to gain information by discarding information, namely, the individuality of the observations. Stigler s second pillar, information measurement, challenges the importance of big data by noting that observations are not all equally important: the amount of information in a data set is often proportional to only the square root of the number of observations, not the absolute number. The third idea is likelihood, the calibration of inferences with the use of probability. Intercomparison is the principle that statistical comparisons do not need to be made with respect to an external standard. The fifth pillar is regression, both a paradox (tall parents on average produce shorter children; tall children on average have shorter parents) and the basis of inference, including Bayesian inference and causal reasoning. The sixth concept captures the importance of experimental design for example, by recognizing the gains to be had from a combinatorial approach with rigorous randomization. The seventh idea is the residual the notion that a complicated phenomenon can be simplified by subtracting the effect of known causes, leaving a residual phenomenon that can be explained more easily.The Seven Pillars of Statistical Wisdom presents an original, unified account of statistical science that will fascinate the interested layperson and engage the professional statistician."

The World of Mathematics: A Four-Volume Set


James Roy Newman - 1956
    It comprises non-technical essays on every aspect of the vast subject, including articles by scores of eminent mathematicians and other thinkers.

Great Formulas Explained - Physics, Mathematics, Economics


Metin Bektas - 2013
    Each formula is explained gently and in great detail, including a discussion of all the quanitites involved and examples that will make clear how and where to apply it. On top of that, there are plenty of illustrations that support the explanations and make the reading experience even more vivid.The book covers a wide range of diverse topics: acoustics, explosions, hurricanes, pipe flow, car traffic, gravity, satellites, roller coasters, flight, conservation laws, trigonometry, equations, inflation, loans, and many more. From the author of "Statistical Snacks" and "Business Math Basics - Practical and Simple".

The Physics of Superheroes


James Kakalios - 2006
    Along the way he provides an engaging and witty commentary while introducing the lay reader to both classic and cutting-edge concepts in physics, including:What Superman's strength can tell us about the Newtonian physics of force, mass, and accelerationHow Iceman's and Storm's powers illustrate the principles of thermal dynamicsThe physics behind the death of Spider-Man's girlfriend Gwen StacyWhy physics professors gone bad are the most dangerous evil geniuses!

The Art and Craft of Problem Solving


Paul Zeitz - 1999
    Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.

Adventures of a Mathematician


Stanislaw M. Ulam - 1976
    As a member of the Los Alamos National Laboratory from 1944 on, Ulam helped to precipitate some of the most dramatic changes of the postwar world. He was among the first to use and advocate computers for scientific research, originated ideas for the nuclear propulsion of space vehicles, and made fundamental contributions to many of today's most challenging mathematical projects. With his wide-ranging interests, Ulam never emphasized the importance of his contributions to the research that resulted in the hydrogen bomb. Now Daniel Hirsch and William Mathews reveal the true story of Ulam's pivotal role in the making of the "Super," in their historical introduction to this behind-the-scenes look at the minds and ideas that ushered in the nuclear age. An epilogue by Françoise Ulam and Jan Mycielski sheds new light on Ulam's character and mathematical originality.