911 Finding the Truth


Andrew Johnson - 2010
    A study of the available evidence will challenge you and much of what you assumed to be true. "Now we are discovering that there is a highly-sophisticated black-ops weaponization of free energy technology and it was responsible for the bizarre, low-temperature pulverization of the Twin Towers. Dr. Judy Wood has pieced together the physical evidence and Andrew Johnson has highlighted who is working to silence or smear whom, as the powers that be rush to impede or at least contain the dissemination of these startling findings." - Conrado Salas Cano, M.S. in Physics ** NOTE: Book is sold at the cheapest possible price on the Amazon Kindle Store - if you hunt round, you can find it for free. **

The Very Best of the Feynman Lectures


Richard P. Feynman - 2005
    Feynman's three-volume Lectures on Physics has been known worldwide as the classic resource for students and professionals alike. That text was based on transcriptions of the hundreds of hours of audio recordings made during Feynman's legendary classroom lectures. Now, for the first time on compact disc, the best of these recordings are available in digitally mastered quality. Ranging from the most basic principles of Newtonian physics through such formidable topics as Einstein's general relativity, superconductivity, and quantum mechanics, Feynman's lectures stand as a monument of clear exposition and deep insight. Timeless and collectible, these unabridged lectures are essential listening, not just for students of physics, but for anyone seeking an introduction to the field from the inimitable Richard Feynman. 6 CDs: Total playing time: Approx. 6 hours

Introduction to Modern Optics


Grant R. Fowles - 1968
    The first half of the book deals with classical physical optics; the second principally with the quantum nature of light. Chapters 1 and 2 treat the propagation of light waves, including the concepts of phase and group velocities, and the vectorial nature of light. Chapter 3 applies the concepts of partial coherence and coherence length to the study of interference, and Chapter 4 takes up multiple-beam interference and includes Fabry-Perot interferometry and multilayer-film theory. Diffraction and holography are the subjects of Chapter 5, and the propagation of light in material media (including crystal and nonlinear optics) are central to Chapter 6. Chapters 7 and 8 introduce the quantum theory of light and elementary optical spectra, and Chapter 9 explores the theory of light amplification and lasers. Chapter 10 briefly outlines ray optics in order to introduce students to the matrix method for treating optical systems and to apply the ray matrix to the study of laser resonators.Many applications of the laser to the study of optics are integrated throughout the text. The author assumes students have had an intermediate course in electricity and magnetism and some advanced mathematics beyond calculus. For classroom use, a list of problems is included at the end of each chapter, with selected answers at the end of the book.

Fearful Symmetry: The Search for Beauty in Modern Physics


A. Zee - 1986
    A. Zee, a distinguished physicist and skillful expositor, tells the exciting story of how today's theoretical physicists are following Einstein in their search for the beauty and simplicity of Nature. Animated by a sense of reverence and whimsy, the book describes the majestic sweep and accomplishments of twentieth-century physics. In the end, we stand in awe before the grand vision of modern physics--one of the greatest chapters in the intellectual history of humankind.

Time: A Traveler's Guide


Clifford A. Pickover - 1998
    Clarke thinks big, but Cliff Pickover outdoes them both. In his newest book, Cliff Pickover outdoes even himself, probing a mystery that has baffled mystics, philosophers, and scientists throughout history--What is the nature of time?In Time: A Traveler's Guide, Pickover takes readers to the forefront of science as he illuminates the most mysterious phenomenon in the universe--time itself. Is time travel possible? Is time real? Does it flow in one direction only? Does it have a beginning and an end? What is eternity? Pickover's book offers a stimulating blend of Chopin, philosophy, Einstein, and modern physics, spiced with diverting side-trips to such topics as the history of clocks, the nature of free will, and the reason gold glitters. Numerous diagrams ensure readers will have no trouble following along. By the time we finish this book, we understand a wide variety of scientific concepts pertaining to time. And most important, we will understand that time travel is, indeed, possible.

Quantum Mechanics


Claude Cohen-Tannoudji - 1977
    Nobel-Prize-winner Claude Cohen-Tannoudji and his colleagues have written this book to eliminate precisely these difficulties. Fourteen chapters provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples which make this work a textbook as well as a timeless reference, allowing to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem which is then treated, and logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples which are put into complementary sections. The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic and thorough presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones like e.g. the harmonic oscillator, and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics as well as detailed expositions of a large number of special problems and more advanced topics, integrated as an essential portion of the text.

Computer Science Illuminated


Nell B. Dale - 2002
    Written By Two Of Today'S Most Respected Computer Science Educators, Nell Dale And John Lewis, The Text Provides A Broad Overview Of The Many Aspects Of The Discipline From A Generic View Point. Separate Program Language Chapters Are Available As Bundle Items For Those Instructors Who Would Like To Explore A Particular Programming Language With Their Students. The Many Layers Of Computing Are Thoroughly Explained Beginning With The Information Layer, Working Through The Hardware, Programming, Operating Systems, Application, And Communication Layers, And Ending With A Discussion On The Limitations Of Computing. Perfect For Introductory Computing And Computer Science Courses, Computer Science Illuminated, Third Edition's Thorough Presentation Of Computing Systems Provides Computer Science Majors With A Solid Foundation For Further Study, And Offers Non-Majors A Comprehensive And Complete Introduction To Computing.

The Large Scale Structure of Space-Time


Stephen Hawking - 1973
    These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.

Space-time and beyond : toward an explanation of the unexplainable


Bob Toben - 1975
    Captioned cartoon drawings offering an overview of universal order as they deal with various phenomena are combined with scientific commentary

A World Without Time: The Forgotten Legacy of Gödel And Einstein


Palle Yourgrau - 2004
    By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Godel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.

Elements of Electromagnetics


Matthew N.O. Sadiku - 1993
    The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.

Mathematics In The Modern World: Readings From Scientific American


Morris Kline - 1968
    

Spacetime Physics


Edwin F. Taylor - 1966
    Written by two of the field's true pioneers, Spacetime Physics can extend and enhance coverage of specialty relativity in the classroom. This thoroughly up-to-date, highly accessible overview covers microgravity, collider accelerators, satellite probes, neutron detectors, radioastronomy, and pulsars.  The chapter on general relativity with new material on gravity waves, black holes, and cosmology.

How to Build a Brain and 34 Other Really Interesting Uses of Maths


Richard Elwes - 2010
    You'll find out how to unknot your DNA, how to count like a supercomputer and how to become famous for solving mathematics' most challenging problem.

Tales of the Quantum: Understanding Physics' Most Fundamental Theory


Art Hobson - 2016
    But far more fundamentally, we live in a universe made of quanta. Many things are not made of atoms: light, radio waves, electric current, magnetic fields, Earth's gravitational field, not to mention exotica such a neutron stars, black holes, dark energy, and dark matter. But everything, including atoms, is made of highly unified or "coherent" bundles of energy called "quanta" that (like everything else) obey certain rules. In the case of the quantum, these rules are called "quantum physics." This is a book about quanta and their unexpected, some would say peculiar, behavior--tales, if you will, of the quantum.The quantum has developed the reputation of being capricious, bewildering, even impossible to understand. The peculiar habits of quanta are certainly not what we would have expected to find at the foundation of physical reality, but these habits are not necessarily bewildering and not at all impossible or paradoxical. This book explains those habits--the quantum rules--in everyday language, without mathematics or unnecessary technicalities. While most popular books about quantum physics follow the topic's scientific history from 1900 to today, this book follows the phenomena: wave-particle duality, fundamental randomness, quantum states, superpositions (being in two places at once), entanglement, non-locality, Schrodinger's cat, and quantum jumps, and presents the history and the scientists only to the extent that they illuminate the phenomena.