Book picks similar to
Introduction to Quantum Effects in Gravity by V. Mukhanov


physics
quantum-gravity
quantum-field-theory
relativity

How to read and do proofs


Daniel Solow - 1982
    Shows how any proof can be understood as a sequence of techniques. Covers the full range of techniques used in proofs, such as the contrapositive, induction, and proof by contradiction. Explains how to identify which techniques are used and how they are applied in the specific problem. Illustrates how to read written proofs with many step-by-step examples. Includes new, expanded appendices related to discrete mathematics, linear algebra, modern algebra and real analysis.

How to Think About Analysis


Lara Alcock - 2014
    It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the students existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research-based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.

Physics and Philosophy


James Hopwood Jeans - 1942
    This discussion paves the way for an outline of epistemological methods in which the rationalism of thinkers like Descartes, Leibniz and Kant is compared to the empiricism of Locke and Hume.Over the course of the book, in a manner that is careful and methodic but never dull, Jeans marshals the evidence for his startling conclusion: recent discoveries in astronomy, mathematics, sub-atomic physics and other disciplines have washed away the scientific basis of many older philosophic discussions. Such long-standing problems as causality, free will and determinism, the nature of space and time, materialism and mentalism must be considered anew int he light of new knowledge and information attained by 20th-century physical science. Even then, however, Jeans cautions against drawing any positive conclusions, pointing out that both physics and philosophy are both relatively young and that we are still, in Newton's words, like children playing with pebbles on the sea-shore, while the great ocean of truth rolls, unexplored, beyond our reach.Although first published nearly 40 years ago, nothing in physics has happened to affect Jean's account in this book; it remains remarkably fresh and undated, a classic exposition of the philosophical implications of scientific knowledge.

A Book of Abstract Algebra


Charles C. Pinter - 1982
    Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. Intended for undergraduate courses in abstract algebra, it is suitable for junior- and senior-level math majors and future math teachers. This second edition features additional exercises to improve student familiarity with applications. An introductory chapter traces concepts of abstract algebra from their historical roots. Succeeding chapters avoid the conventional format of definition-theorem-proof-corollary-example; instead, they take the form of a discussion with students, focusing on explanations and offering motivation. Each chapter rests upon a central theme, usually a specific application or use. The author provides elementary background as needed and discusses standard topics in their usual order. He introduces many advanced and peripheral subjects in the plentiful exercises, which are accompanied by ample instruction and commentary and offer a wide range of experiences to students at different levels of ability.

Introduction to Quantum Mechanics with Applications to Chemistry


Linus Pauling - 1985
    Numerous tables and figures.

Number Theory


George E. Andrews - 1994
    In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..

Elementary Number Theory


David M. Burton - 1976
    It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.

Statistics for Management


Richard I. Levin - 1978
    Like its predecessors, the seventh edition includes the absolute minimum of mathematical/statistical notation necessary to teach the material. Concepts are fully explained in simple, easy-to-understand language as they are presented, making the book an excellent source from which to learn and teach. After each discussion, readers are guided through real-world examples to show how book principles work in professional practice. Includes easy-to-understand explanations of difficult statistical topics, such as sampling distributions, relationship between confidence level and confidence interval, interpreting r-square. A complete package of teaching/learning aids is provided in every chapter, including chapter review exercises, chapter concepts tests,"Statistics at Work" conceptual cases, "Computer Database Exercises," "From the Textbook to the Real-World Examples." This ISBN is in two volumes Part A and Part B.

Universe


Roger A. Freedman - 1998
    It places the basics of astronomy and the process of science within the grasp of introductory students. Package Universe, Eighth Edition with FREE Starry Night CD!use Package ISBN 0-7167-9564-7 SPLIT VOLUMESIn addition to the complete 28-chapter version of Universe, two shorter versions are also available:Universe: The Solar System, Third Edition(Chapters 1-16 and 28)0-7167-9563-9; w/FREE Starry Night CD, 0-7167-9562-0Universe: Stars and Galaxies, Third Edition(Chapters 1-8 which includes a two-chapter overview of the solar system) and Chapters 16-28)0-7167-9561-2; w/FREE Starry Night CD, 0-7167-9565-5

Introductory Quantum Mechanics


Richard L. Liboff - 1980
    Included in this edition is a new chapter on the revolutionary topic of quantum computing.

Mathematical Methods for Physics and Engineering: A Comprehensive Guide


K.F. Riley - 1998
    As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. Further tabulations, of relevance in statistics and numerical integration, have been added. In this edition, half of the exercises are provided with hints and answers and, in a separate manual available to both students and their teachers, complete worked solutions. The remaining exercises have no hints, answers or worked solutions and can be used for unaided homework; full solutions are available to instructors on a password-protected web site, www.cambridge.org/9780521679718.

Turbulent Mirror: An Illustrated Guide to Chaos Theory and the Science of Wholeness


John P. Briggs - 1989
    But now, with the aid of high-speed computers, scientists have been able to penetrate a reality that is changing the way we perceive the universe. Their findings -- the basis for chaos theory -- represent one of the most exciting scientific pursuits of our time.No better introduction to this find could be found than John Briggs and F. David Peat's Turbulent Mirror. Together, they explore the many faces of chaos and reveal how its law direct most of the processes of everyday life and how it appears that everything in the universe is interconnected -- discovering an "emerging science of wholeness."Turbulent Mirror introduces us to the scientists involved in study this endlessly strange field; to the theories that are turning our perception of the world on its head; and to the discoveries in mathematics, biology, and physics that are heralding a revolution more profound than the one responsible for producing the atomic bomb. With practical applications ranging from the control of traffic flow and the development of artifical intelligence to the treatment of heart attacks and schizophrenia, chaos promises to be an increasingly rewarding area of inquiry -- of interest to everyone.

New Scientist: The Origin of (almost) Everything


New Scientist - 2020
    If these galaxies had always been travelling, he reasoned, then they must, at some point, have been on top of one another. This discovery transformed the debate about one of the most fundamental questions of human existence - how did the universe begin?Every society has stories about the origin of the cosmos and its inhabitants, but now, with the power to peer into the early universe and deploy the knowledge gleaned from archaeology, geology, evolutionary biology and cosmology, we are closer than ever to understanding where it all came from. In The Origin of (almost) Everything, New Scientist explores the modern origin stories of everything from the Big Bang, meteorites and dark energy, to dinosaurs, civilisation, timekeeping, belly-button fluff and beyond.From how complex life evolved on Earth, to the first written language, to how humans conquered space, The Origin of (almost) Everything offers a unique history of the past, present and future of our universe.span

Pythagoras's Trousers: God, Physics, and the Gender War


Margaret Wertheim - 1995
    From its inception, Margaret Wertheim shows, physics has been an overwhelmingly male-dominated activity; she argues that gender inequity in physics is a result of the religious origins of the enterprise.Pythagoras' Trousers is a highly original history of one of science's most powerful disciplines. It is also a passionate argument for the need to involve both women and men in the process of shaping the technologies from the next generation of physicists.

What is time? What is space? (I Dialoghi)


Carlo Rovelli - 2004
    Time and space as we know them will disappear from the scientific picture of the world, in the same way in which the centre of the universe did”. In this agile text, derived from a long interview, Carlo Rovelli, theoretical physicist and pioneer of modern quantum gravity, describes his personal and intellectual journey, starting from the rebellion of his young years and the discovery of the “enchanting adventure” of theoretical research, till the vertiginous hypotheses of today’s physics. In a simple language, Rovelli introduces us to a “space” made of grains, a “time” which is the result of our ignorance, to hot black holes and how to think about the beginning of the universe. But he also discusses the value, the risks, and the fascination of this quest. Science, for Rovelli, is a continuous exploration of new ways of thinking the world, the desire of looking “beyond the hill” and seeing the world always with new eyes, the choice of never giving up dreams.