Introducing Windows Server 2012
Mitch Tulloch - 2012
This practical introduction illuminates new features and capabilities, with scenarios demonstrating how the platform can meet the needs of your business.Based on beta software, this book provides the early, high-level information you need to begin preparing now for deployment and management. Topics include:Virtualization and cloud solutions Availability Provisioning and storage management Security and scalability Infrastructure options Server administration
Python: 3 Manuscripts in 1 book: - Python Programming For Beginners - Python Programming For Intermediates - Python Programming for Advanced
Maurice J. Thompson - 2018
This Box Set Includes 3 Books: Python Programming For Beginners - Learn The Basics Of Python In 7 Days! Python Programming For Intermediates - Learn The Basics Of Python In 7 Days! Python Programming For Advanced - Learn The Basics Of Python In 7 Days! Python Programming For Beginners - Learn The Basics Of Python In 7 Days! Here's what you'll learn from this book: ✓Introduction ✓Understanding Python: A Detailed Background ✓How Python Works ✓Python Glossary ✓How to Download and Install Python ✓Python Programming 101: Interacting With Python in Different Ways ✓How to Write Your First Python Program ✓Variables, Strings, Lists, Tuples, Dictionaries ✓About User-Defined Functions ✓How to Write User-Defined Functions in Python ✓About Coding Style ✓Practice Projects: The Python Projects for Your Practice Python Programming For Intermediates - Learn The Basics Of Python In 7 Days! Here's what you'll learn from this book: ✓ Shallow copy and deep copy ✓ Objects and classes in Python–including python inheritance, multiple inheritances, and so on ✓ Recursion in Python ✓ Debugging and testing ✓ Fibonacci sequence (definition) and Memoization in Python in Python ✓ Arguments in Python ✓ Namespaces in Python and Python Modules ✓ Simple Python projects for Intermediates Python Programming For Advanced - Learn The Basics Of Python In 7 Days! Here's what you'll learn from this book: ✓File management ✓Python Iterator ✓Python Generator ✓Regular Expressions ✓Python Closure ✓Python Property ✓Python Assert, and ✓Simple recap projects Start Coding Now!
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Aurélien Géron - 2017
Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details
Using Information Technology
Brian K. Williams - 1990
This text is user-focused and has been highly updated including topics, pictures and examples. The Williams text contains less theory and more application to engage students who might be more familiar with technology. Continually published and updated for over 15 years, Using Information Technology was the first text to foresee and define the impact of digital convergence--the fusion of computers and communications. It was also the first text to acknowledge the new priorities imposed by the Internet and World Wide Web and bring discussion of them from late in the course to the beginning. Today, it is directed toward the "Always On" generation that is at ease with digital technology--comfortable with iPhones, MySpace, Facebook, Twitter, Wikipedia, and the blogosphere--but not always savvy about its processes, possibilities, and liabilities. This 8th edition continues to address the two most significant challenges that instructors face in teaching this course: -Trying to make the course interesting and challenging, and -Trying to teach to students with a variety of computer backgrounds. In addition, this text correlates with Simnet Online for full integration of resources within the Computing Concepts course.
Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People
Aditya Y. Bhargava - 2015
The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.
Living Clojure
Carin Meier - 2015
Author Carin Meier not only provides a practical overview of this JVM language and its functional programming concepts, but also includes a complete hands-on training course to help you learn Clojure in a structured way.The first half of the book takes you through Closure’s unique design and lets you try your hand at two Clojure projects, including a web app. The holistic course in second half provides you with critical tools and resources, including ways to plug into the Clojure community.
Understand the basic structure of a Clojure expression
Learn how to shape and control code in a functional way
Discover how Clojure handles real-world state and concurrency
Take advantage of Java classes and learn how Clojure handles polymorphism
Manage and use libraries in a Clojure project
Use the core.async library for asynchronous and concurrent communication
Explore the power of macros in Clojure programming
Learn how to think in Clojure by following the book’s seven-week training course
Computer Science: A Structured Approach Using C++
Behrouz A. Forouzan - 1999
Every complete program uses a consistent style, and as programs are analyzed, styles and standards are further explained. Whenever possible, the authors develop the principle of a subject before they introduce the language implementation so the student understands the concept before dealing with the nuances of C++. In addition, a vast array of figures and tables visually reinforce key concepts. By integrating software engineering principles and encouraging the student to resist the temptation to immediately code, the text builds a solid foundation in problem solving.
Web Scraping with Python: Collecting Data from the Modern Web
Ryan Mitchell - 2015
With this practical guide, you’ll learn how to use Python scripts and web APIs to gather and process data from thousands—or even millions—of web pages at once.
Ideal for programmers, security professionals, and web administrators familiar with Python, this book not only teaches basic web scraping mechanics, but also delves into more advanced topics, such as analyzing raw data or using scrapers for frontend website testing. Code samples are available to help you understand the concepts in practice.
Learn how to parse complicated HTML pages
Traverse multiple pages and sites
Get a general overview of APIs and how they work
Learn several methods for storing the data you scrape
Download, read, and extract data from documents
Use tools and techniques to clean badly formatted data
Read and write natural languages
Crawl through forms and logins
Understand how to scrape JavaScript
Learn image processing and text recognition
Maven: The Definitive Guide
Timothy O'Brien - 2008
Now there's help. The long-awaited official documentation to Maven is here. Written by Maven creator Jason Van Zyl and his team at Sonatype, Maven: The Definitive Guide clearly explains how this tool can bring order to your software development projects. Maven is largely replacing Ant as the build tool of choice for large open source Java projects because, unlike Ant, Maven is also a project management tool that can run reports, generate a project website, and facilitate communication among members of a working team. To use Maven, everything you need to know is in this guide. The first part demonstrates the tool's capabilities through the development, from ideation to deployment, of several sample applications -- a simple software development project, a simple web application, a multi-module project, and a multi-module enterprise project. The second part offers a complete reference guide that includes:The POM and Project Relationships The Build Lifecycle Plugins Project website generation Advanced site generation Reporting Properties Build Profiles The Maven Repository Team Collaboration Writing Plugins IDEs such as Eclipse, IntelliJ, ands NetBeans Using and creating assemblies Developing with Maven ArchetypesSeveral sources for Maven have appeared online for some time, but nothing served as an introduction and comprehensive reference guide to this tool -- until now. Maven: The Definitive Guide is the ideal book to help you manage development projects for software, web applications, and enterprise applications. And it comes straight from the source.
Java Generics and Collections: Speed Up the Java Development Process
Maurice Naftalin - 2006
Generics and the greatly expanded collection libraries have tremendously increased the power of Java 5 and Java 6. But they have also confused many developers who haven't known how to take advantage of these new features.Java Generics and Collections covers everything from the most basic uses of generics to the strangest corner cases. It teaches you everything you need to know about the collections libraries, so you'll always know which collection is appropriate for any given task, and how to use it.Topics covered include:• Fundamentals of generics: type parameters and generic methods• Other new features: boxing and unboxing, foreach loops, varargs• Subtyping and wildcards• Evolution not revolution: generic libraries with legacy clients and generic clients with legacy libraries• Generics and reflection• Design patterns for generics• Sets, Queues, Lists, Maps, and their implementations• Concurrent programming and thread safety with collections• Performance implications of different collectionsGenerics and the new collection libraries they inspired take Java to a new level. If you want to take your software development practice to a new level, this book is essential reading.Philip Wadler is Professor of Theoretical Computer Science at the University of Edinburgh, where his research focuses on the design of programming languages. He is a co-designer of GJ, work that became the basis for generics in Sun's Java 5.0.Maurice Naftalin is Technical Director at Morningside Light Ltd., a software consultancy in the United Kingdom. He has most recently served as an architect and mentor at NSB Retail Systems plc, and as the leader of the client development team of a major UK government social service system."A brilliant exposition of generics. By far the best book on the topic, it provides a crystal clear tutorial that starts with the basics and ends leaving the reader with a deep understanding of both the use and design of generics." Gilad Bracha, Java Generics Lead, Sun Microsystems
R Packages
Hadley Wickham - 2015
This practical book shows you how to bundle reusable R functions, sample data, and documentation together by applying author Hadley Wickham’s package development philosophy. In the process, you’ll work with devtools, roxygen, and testthat, a set of R packages that automate common development tasks. Devtools encapsulates best practices that Hadley has learned from years of working with this programming language.
Ideal for developers, data scientists, and programmers with various backgrounds, this book starts you with the basics and shows you how to improve your package writing over time. You’ll learn to focus on what you want your package to do, rather than think about package structure.
Learn about the most useful components of an R package, including vignettes and unit tests
Automate anything you can, taking advantage of the years of development experience embodied in devtools
Get tips on good style, such as organizing functions into files
Streamline your development process with devtools
Learn the best way to submit your package to the Comprehensive R Archive Network (CRAN)
Learn from a well-respected member of the R community who created 30 R packages, including ggplot2, dplyr, and tidyr
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
Applied Cryptography: Protocols, Algorithms, and Source Code in C
Bruce Schneier - 1993
… The book the National Security Agency wanted never to be published." –Wired Magazine "…monumental… fascinating… comprehensive… the definitive work on cryptography for computer programmers…" –Dr. Dobb's Journal"…easily ranks as one of the most authoritative in its field." —PC Magazine"…the bible of code hackers." –The Millennium Whole Earth CatalogThis new edition of the cryptography classic provides you with a comprehensive survey of modern cryptography. The book details how programmers and electronic communications professionals can use cryptography—the technique of enciphering and deciphering messages-to maintain the privacy of computer data. It describes dozens of cryptography algorithms, gives practical advice on how to implement them into cryptographic software, and shows how they can be used to solve security problems. Covering the latest developments in practical cryptographic techniques, this new edition shows programmers who design computer applications, networks, and storage systems how they can build security into their software and systems. What's new in the Second Edition? * New information on the Clipper Chip, including ways to defeat the key escrow mechanism * New encryption algorithms, including algorithms from the former Soviet Union and South Africa, and the RC4 stream cipher * The latest protocols for digital signatures, authentication, secure elections, digital cash, and more * More detailed information on key management and cryptographic implementations
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Data Science at the Command Line: Facing the Future with Time-Tested Tools
Jeroen Janssens - 2014
You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data.To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools.Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line.Obtain data from websites, APIs, databases, and spreadsheetsPerform scrub operations on plain text, CSV, HTML/XML, and JSONExplore data, compute descriptive statistics, and create visualizationsManage your data science workflow using DrakeCreate reusable tools from one-liners and existing Python or R codeParallelize and distribute data-intensive pipelines using GNU ParallelModel data with dimensionality reduction, clustering, regression, and classification algorithms