Book picks similar to
Neural-Symbolic Cognitive Reasoning by Artur S. D'Avila Garcez


artificial-intelligence
cognitive-science
academic
formal-logic

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Organic Chemistry II as a Second Language


David R. Klein - 2005
    It explores the critical concepts while also examining why they are relevant. The core content is presented within the framework of predicting products, proposing mechanisms, and solving synthesis problems. Readers will fine-tune the key skills involved in solving those types of problems with the help of interactive, step-by-step instructions and problems.

Semiconductor Optoelectronic Devices


Pallab Bhattacharya - 1993
    KEY TOPICS: Coverage begins with an optional review of key concepts--such as properties of compound semiconductor, quantum mechanics, semiconductor statistics, carrier transport properties, optical processes, and junction theory--then progress gradually through more advanced topics. The Second Edition has been both updated and expanded to include the recent developments in the field.

"When the Sirens Were Silent" How the Warning System Failed a Community


Mike Smith - 2012
    That acclaimed book, as one reviewer put it, "made meteorologists the most unlikely heroes of recent literature." But, what if the warning system failed to provide a clear, timely notice of a major storm? Tragically, that scenario played out in Joplin, Missouri, on May 22, 2011. As a wedding, a high school graduation, and shopping trips were in progress, an invisible monster storm was developing west of the city. When it arrived, many were caught unaware. One hundred sixty-one perished and one thousand were injured. "When the Sirens Were Silent" is the gripping story of the Joplin tornado. It recounts that horrible day with a goal of insuring this does not happen again. The book gives you the tools you need to keep yourself and your family safe. Included are clever lift-out copies of the latest tornado safety rules for homes, schools, and offices.

Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People


Aditya Y. Bhargava - 2015
    The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.

Artificial Intelligence: 101 Things You Must Know Today About Our Future


Lasse Rouhiainen - 2018
    In fact, AI will dramatically change our entire society.You might have heard that many jobs will be replaced by automation and robots, but did you also know that at the same time a huge number of new jobs will be created by AI?This book covers many fascinating and timely topics related to artificial intelligence, including: self-driving cars, robots, chatbots, and how AI will impact the job market, business processes, and entire industries, just to name a few.This book is divided into ten chapters:Chapter I: Introduction to Artificial IntelligenceChapter II: How Artificial Intelligence Is Changing Many IndustriesChapter III: How Artificial Intelligence Is Changing Business ProcessesChapter IV: Chatbots and How They Will Change CommunicationChapter V: How Artificial Intelligence Is Changing the Job MarketChapter VI: Self-Driving Cars and How They Will Change Traffic as We Know ItChapter VII: Robots and How They Will Change Our LivesChapter VIII: Artificial Intelligence Activities of Big Technology CompaniesChapter IX: Frequently Asked Questions About Artificial Intelligence Part IChapter X: Frequently Asked Questions About Artificial Intelligence Part IITo enhance your learning experience and help make the concepts easier to understand, there are more than 85 visual presentations included throughout the book.You will learn the answers to 101 questions about artificial intelligence, and also have access to a large number of resources, ideas and tips that will help you to understand how artificial intelligence will change our lives.Who is this book for?Managers and business professionalsMarketers and influencersEntrepreneurs and startupsConsultants and coachesEducators and teachersStudents and life-long learnersAnd everyone else who is interested in our future.Are you ready to discover how artificial intelligence will impact your life This guidebook offers a multitude of tools, techniques and strategies that every business and individual can quickly apply and benefit from.

Cognitive Psychology


Robert J. Sternberg - 2005
    Utilizing the theme that human cognition has evolved over time as a means of adapting to our environment, Sternberg explores the basics of cognitive psychology through its coverage of cognitive neuroscience, attention and consciousness, perception, memory, knowledge representation, language, problem solving and creativity, decision making and reasoning, cognitive development, and intelligence. Sternberg provides the most comprehensive coverage of any cognitive psychology text available; a "from lab to life" approach covering theory, lab and field research, and applications to everyday life (like driving while talking on a cell phone and airport security).

Paradigms of Artificial Intelligence Programming: Case Studies in Common LISP


Peter Norvig - 1991
    By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts. The author strongly emphasizes the practical performance issues involved in writing real working programs of significant size. Chapters on troubleshooting and efficiency are included, along with a discussion of the fundamentals of object-oriented programming and a description of the main CLOS functions. This volume is an excellent text for a course on AI programming, a useful supplement for general AI courses and an indispensable reference for the professional programmer.

Mind Design II: Philosophy, Psychology, and Artificial Intelligence


John Haugeland - 1997
    Unlike traditional empirical psychology, it is more oriented toward the how than the what. An experiment in mind design is more likely to be an attempt to build something and make it work--as in artificial intelligence--than to observe or analyze what already exists. Mind design is psychology by reverse engineering.When Mind Design was first published in 1981, it became a classic in the then-nascent fields of cognitive science and AI. This second edition retains four landmark essays from the first, adding to them one earlier milestone (Turing's Computing Machinery and Intelligence) and eleven more recent articles about connectionism, dynamical systems, and symbolic versus nonsymbolic models. The contributors are divided about evenly between philosophers and scientists. Yet all are philosophical in that they address fundamental issues and concepts; and all are scientific in that they are technically sophisticated and concerned with concrete empirical research.ContributorsRodney A. Brooks, Paul M. Churchland, Andy Clark, Daniel C. Dennett, Hubert L. Dreyfus, Jerry A. Fodor, Joseph Garon, John Haugeland, Marvin Minsky, Allen Newell, Zenon W. Pylyshyn, William Ramsey, Jay F. Rosenberg, David E. Rumelhart, John R. Searle, Herbert A. Simon, Paul Smolensky, Stephen Stich, A.M. Turing, Timothy van Gelder

Think Stats


Allen B. Downey - 2011
    This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

The Year in Tech, 2021: The Insights You Need from Harvard Business Review (HBR Insights Series)


Harvard Business Review - 2020
    

What Algorithms Want: Imagination in the Age of Computing


Ed Finn - 2017
    It's as if we think of code as a magic spell, an incantation to reveal what we need to know and even what we want. Humans have always believed that certain invocations—the marriage vow, the shaman's curse—do not merely describe the world but make it. Computation casts a cultural shadow that is shaped by this long tradition of magical thinking. In this book, Ed Finn considers how the algorithm—in practical terms, “a method for solving a problem”—has its roots not only in mathematical logic but also in cybernetics, philosophy, and magical thinking.Finn argues that the algorithm deploys concepts from the idealized space of computation in a messy reality, with unpredictable and sometimes fascinating results. Drawing on sources that range from Neal Stephenson's Snow Crash to Diderot's Encyclopédie, from Adam Smith to the Star Trek computer, Finn explores the gap between theoretical ideas and pragmatic instructions. He examines the development of intelligent assistants like Siri, the rise of algorithmic aesthetics at Netflix, Ian Bogost's satiric Facebook game Cow Clicker, and the revolutionary economics of Bitcoin. He describes Google's goal of anticipating our questions, Uber's cartoon maps and black box accounting, and what Facebook tells us about programmable value, among other things.If we want to understand the gap between abstraction and messy reality, Finn argues, we need to build a model of “algorithmic reading” and scholarship that attends to process, spearheading a new experimental humanities.

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science


Bradley Efron - 2016
    'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Fundamentals of Logic Design


Charles H. Roth Jr. - 1975
    Author Charles H. Roth, Jr. carefully presents the theory that is necessary for understanding the fundamental concepts of logic design while not overwhelming students with the mathematics of switching theory. Divided into 20 easy-to-grasp study units, the book covers such fundamental concepts as Boolean algebra, logic gates design, flip-flops, and state machines. By combining flip-flops with networks of logic gates, students will learn to design counters, adders, sequence detectors, and simple digital systems. After covering the basics, this text presents modern design techniques using programmable logic devices and the VHDL hardware description language.