Book picks similar to
Basketball on Paper: Rules and Tools for Performance Analysis by Dean Oliver
sports
basketball
non-fiction
sports-analytics
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Extra Innings: More Baseball Between the Numbers from the Team at Baseball Prospectus
Baseball Prospectus - 2012
Sixteen years later, the Baseball Prospectus annual regularly hits best-seller lists and has become an indispensable guide for the serious fan. In Extra Innings, the team at Baseball Prospectus integrates statistics, interviews, and analysis to deliver twenty arguments about today’s game. In the tradition of their seminal book, Baseball Between the Numbers, they take on everything from steroids to the amateur draft. They probe the impact of managers on the game. They explain the critical art of building a bullpen. In an era when statistics matter more than ever, Extra Innings is an essential volume for every baseball fan.
How Not to Be Wrong: The Power of Mathematical Thinking
Jordan Ellenberg - 2014
In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it.Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.
Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy
Cathy O'Neil - 2016
Increasingly, the decisions that affect our lives--where we go to school, whether we can get a job or a loan, how much we pay for health insurance--are being made not by humans, but by machines. In theory, this should lead to greater fairness: Everyone is judged according to the same rules.But as mathematician and data scientist Cathy O'Neil reveals, the mathematical models being used today are unregulated and uncontestable, even when they're wrong. Most troubling, they reinforce discrimination--propping up the lucky, punishing the downtrodden, and undermining our democracy in the process.
The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
Pedro Domingos - 2015
In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Soccermatics: Mathematical Adventures in the Beautiful Game
David Sumpter - 2016
How to make sense of them? The answer lies in mathematical modeling, a science with applications in a host of biological systems. Soccermatics brings the two together in a fascinating, mind-bending synthesis.What's the similarity between an ant colony and Total Football, Dutch style? How is the Barcelona midfield linked geometrically? And how can we relate the mechanics of a Mexican Wave to the singing of cicadas in an Australian valley? Welcome to the world of mathematical modeling, expressed brilliantly by David Sumpter through the prism of soccer. Soccer is indeed more than a game and this book is packed with game theory. After reading it, you will forever watch the game with new eyes.
The Data Detective: Ten Easy Rules to Make Sense of Statistics
Tim Harford - 2020
That’s a mistake, Tim Harford says in The Data Detective. We shouldn’t be suspicious of statistics—we need to understand what they mean and how they can improve our lives: they are, at heart, human behavior seen through the prism of numbers and are often “the only way of grasping much of what is going on around us.” If we can toss aside our fears and learn to approach them clearly—understanding how our own preconceptions lead us astray—statistics can point to ways we can live better and work smarter.As “perhaps the best popular economics writer in the world” (New Statesman), Tim Harford is an expert at taking complicated ideas and untangling them for millions of readers. In The Data Detective, he uses new research in science and psychology to set out ten strategies for using statistics to erase our biases and replace them with new ideas that use virtues like patience, curiosity, and good sense to better understand ourselves and the world. As a result, The Data Detective is a big-idea book about statistics and human behavior that is fresh, unexpected, and insightful.
Forecasting: Principles and Practice
Rob J. Hyndman - 2013
Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.
Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die
Eric Siegel - 2013
Rather than a "how to" for hands-on techies, the book entices lay-readers and experts alike by covering new case studies and the latest state-of-the-art techniques.You have been predicted — by companies, governments, law enforcement, hospitals, and universities. Their computers say, "I knew you were going to do that!" These institutions are seizing upon the power to predict whether you're going to click, buy, lie, or die.Why? For good reason: predicting human behavior combats financial risk, fortifies healthcare, conquers spam, toughens crime fighting, and boosts sales.How? Prediction is powered by the world's most potent, booming unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn.Predictive analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future — lifting a bit of the fog off our hazy view of tomorrow — means pay dirt.In this rich, entertaining primer, former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: -What type of mortgage risk Chase Bank predicted before the recession. -Predicting which people will drop out of school, cancel a subscription, or get divorced before they are even aware of it themselves. -Why early retirement decreases life expectancy and vegetarians miss fewer flights. -Five reasons why organizations predict death, including one health insurance company. -How U.S. Bank, European wireless carrier Telenor, and Obama's 2012 campaign calculated the way to most strongly influence each individual. -How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! -How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. -How judges and parole boards rely on crime-predicting computers to decide who stays in prison and who goes free. -What's predicted by the BBC, Citibank, ConEd, Facebook, Ford, Google, IBM, the IRS, Match.com, MTV, Netflix, Pandora, PayPal, Pfizer, and Wikipedia. A truly omnipresent science, predictive analytics affects everyone, every day. Although largely unseen, it drives millions of decisions, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate.Predictive analytics transcends human perception. This book's final chapter answers the riddle: What often happens to you that cannot be witnessed, and that you can't even be sure has happened afterward — but that can be predicted in advance?Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.
Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak
Travis Sawchik - 2015
Pittsburghers joked their town was the city of champions…and the Pirates. Big Data Baseball is the story of how the 2013 Pirates, mired in the longest losing streak in North American pro sports history, adopted drastic big-data strategies to end the drought, make the playoffs, and turn around the franchise's fortunes.Award-winning journalist Travis Sawchik takes you behind the scenes to expertly weave together the stories of the key figures who changed the way the small-market Pirates played the game. For manager Clint Hurdle and the front office staff to save their jobs, they could not rely on a free agent spending spree, instead they had to improve the sum of their parts and find hidden value. They had to change. From Hurdle shedding his old-school ways to work closely with Neal Huntington, the forward-thinking data-driven GM and his team of talented analysts; to pitchers like A. J. Burnett and Gerrit Cole changing what and where they threw; to Russell Martin, the undervalued catcher whose expert use of the nearly-invisible skill of pitch framing helped the team's pitchers turn more balls into strikes; to Clint Barmes, a solid shortstop and one of the early adopters of the unconventional on-field shift which forced the entire infield to realign into positions they never stood in before. Under Hurdle's leadership, a culture of collaboration and creativity flourished as he successfully blended whiz kid analysts with graybeard coaches—a kind of symbiotic teamwork which was unique to the sport.Big Data Baseball is Moneyball on steroids. It is an entertaining and enlightening underdog story that uses the 2013 Pirates season as the perfect lens to examine the sport's burgeoning big-data movement. With the help of data-tracking systems like PitchF/X and TrackMan, the Pirates collected millions of data points on every pitch and ball in play to create a tome of color-coded reports that revealed groundbreaking insights for how to win more games without spending a dime. In the process, they discovered that most batters struggled to hit two-seam fastballs, that an aggressive defensive shift on the field could turn more batted balls into outs, and that a catcher's most valuable skill was hidden. All these data points which aren't immediately visible to players and spectators, are the bit of magic that led the Pirates to spin straw in to gold, finish the 2013 season in second place, end a twenty-year losing streak.
Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People
Aditya Y. Bhargava - 2015
The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Aurélien Géron - 2017
Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details
Seven Seconds or Less: My Season on the Bench with the Runnin' and Gunnin' Phoenix Suns
Jack McCallum - 2006
He was quickly granted access, and while his role as "assistant coach" lasted only through the preseason, McCallum stayed on with the team throughout their amazing 2005-2006 season. McCallum was looking for real inside access and he certainly got it. He spent the season in the locker room and in the coaches' meetings, learning what makes this wildly popular, innovative, and international assemblage of talented players and brilliant coaches tick.For years, NBA basketball was marked by a plodding, dull-as-dishwater style of play -- that was until coach Mike D'Antoni, point guard Steve Nash, and the high-flying Phoenix Suns set the league on fire with their old-school, run-and-gun approach to offense. Along the way they won back legions of disillusioned fans and demonstrated the virtues of team play to a league preoccupied with one-on-one theatrics.In "Seven Seconds or Less," McCallum describes his year trying to keep up with the fast-breaking Suns on and off the court. He takes readers inside the heads of Nash, the team's mercurial floor general; the maverick D'Antoni; and dozens of others who make up the close-knit Suns family. On the court, there's excitement as the Suns overcome a rash ofinjuries to once again battle for a conference title. Off the court, controversy rages as the team endures a major front-office change in midseason. Throughout it all, the team continues to bedevil opponents and challenge the status quo with their throwback style.In the spirit of Buzz Bissinger's "Three Nights in August" and John Feinstein's "A Season on the Brink, Seven Seconds or Less" is an in-depth look at one of the greatest shows in sports.