Empire of the Stars: Obsession, Friendship and Betrayal in the Quest for Black Holes


Arthur I. Miller - 2005
    Subrahmanyan Chandrasekhar--Chandra, as he was called--calculated that certain stars would suffer a strange and violent death, collapsing to virtually nothing. This extraordinary claim, the first mathematical description of black holes, brought Chandra into direct conflict with Sir Arthur Eddington, one of the greatest astrophysicists of the day. Eddington ridiculed the young man's idea at a meeting of the Royal Astronomy Society in 1935, sending Chandra into an intellectual and emotional tailspin--and hindering the progress of astrophysics for nearly forty years. Empire of the Stars is the dramatic story of this intellectual debate and its implications for twentieth-century science. Arthur I. Miller traces the idea of black holes from early notions of "dark stars" to the modern concepts of wormholes, quantum foam, and baby universes. In the process, he follows the rise of two great theories--relativity and quantum mechanics--that meet head on in black holes. Empire of the Stars provides a unique window into the remarkable quest to understand how stars are born, how they live, and, most portentously (for their fate is ultimately our own), how they die. It is also the moving tale of one man's struggle against the establishment--an episode that sheds light on what science is, how it works, and where it can go wrong. Miller exposes the deep-seated prejudices that plague even the most rational minds. Indeed, it took the nuclear arms race to persuade scientists to revisit Chandra's work from the 1930s, for the core of a hydrogen bomb resembles nothing so much as an exploding star. Only then did physicists realize the relevance, truth, and importance of Chandra's work, which was finally awarded a Nobel Prize in 1983. Set against the waning days of the British Empire and taking us right up to the present, this sweeping history examines the quest to understand one of the most forbidding phenomena in the universe, as well as the passions that fueled that quest over the course of a century.

For the Love of Physics: From the End of the Rainbow to the Edge of Time - A Journey Through the Wonders of Physics


Walter Lewin - 2011
    “I walk with a new spring in my step and I look at life through physics-colored eyes,” wrote one such fan. When Lewin’s lectures were made available online, he became an instant YouTube celebrity, and The New York Times declared, “Walter Lewin delivers his lectures with the panache of Julia Child bringing French cooking to amateurs and the zany theatricality of YouTube’s greatest hits.” For more than thirty years as a beloved professor at the Massachusetts Institute of Technology, Lewin honed his singular craft of making physics not only accessible but truly fun, whether putting his head in the path of a wrecking ball, supercharging himself with three hundred thousand volts of electricity, or demonstrating why the sky is blue and why clouds are white. Now, as Carl Sagan did for astronomy and Brian Green did for cosmology, Lewin takes readers on a marvelous journey in For the Love of Physics, opening our eyes as never before to the amazing beauty and power with which physics can reveal the hidden workings of the world all around us. “I introduce people to their own world,” writes Lewin, “the world they live in and are familiar with but don’t approach like a physicist—yet.” Could it be true that we are shorter standing up than lying down? Why can we snorkel no deeper than about one foot below the surface? Why are the colors of a rainbow always in the same order, and would it be possible to put our hand out and touch one? Whether introducing why the air smells so fresh after a lightning storm, why we briefly lose (and gain) weight when we ride in an elevator, or what the big bang would have sounded like had anyone existed to hear it, Lewin never ceases to surprise and delight with the extraordinary ability of physics to answer even the most elusive questions. Recounting his own exciting discoveries as a pioneer in the field of X-ray astronomy—arriving at MIT right at the start of an astonishing revolution in astronomy—he also brings to life the power of physics to reach into the vastness of space and unveil exotic uncharted territories, from the marvels of a supernova explosion in the Large Magellanic Cloud to the unseeable depths of black holes. “For me,” Lewin writes, “physics is a way of seeing—the spectacular and the mundane, the immense and the minute—as a beautiful, thrillingly interwoven whole.” His wonderfully inventive and vivid ways of introducing us to the revelations of physics impart to us a new appreciation of the remarkable beauty and intricate harmonies of the forces that govern our lives.

Merlin's Tour of the Universe


Neil deGrasse Tyson - 1989
    In this delightful tour of the galaxies, Merlin often recounts his conversations with these historical figures in his responses to popular astronomy questions asked by adults and children alike. Merlin's well-informed answers combine a unique combination of wit and poetry along with serious science explained in refreshingly clear, reader-friendly language.Dear Merlin: Can a person cross our galaxy in a spaceship during one human lifespan?Merlin: In 1905, Merlin's good friend Albert Einstein introduced the "Special Theory of Relativity," which predicts that time will tick slower and slower the faster you travel. Were you to embark on such an adventure you could conceivably age as little as you wish, depending of course, on your exact speed. The problem arises when you return to Earth, which will have moved several hundred thousand years into the future and everyone will have forgotten about you.A skywatcher's book for lovers of the universe by one of its greatest lights.

Cosmos


Carl Sagan - 1980
    In the book, Sagan explores 15 billion years of cosmic evolution and the development of science and civilization. Cosmos traces the origins of knowledge and the scientific method, mixing science and philosophy, and speculates to the future of science. The book also discusses the underlying premises of science by providing biographical anecdotes about many prominent scientists throughout history, placing their contributions into the broader context of the development of modern science.The book covers a broad range of topics, comprising Sagan's reflections on anthropological, cosmological, biological, historical, and astronomical matters from antiquity to contemporary times. Sagan reiterates his position on extraterrestrial life—that the magnitude of the universe permits the existence of thousands of alien civilizations, but no credible evidence exists to demonstrate that such life has ever visited earth.

Einstein's Dice and Schrödinger's Cat: How Two Great Minds Battled Quantum Randomness to Create a Unified Theory of Physics


Paul Halpern - 2015
    Einstein famously quipped that God does not play dice with the universe, and Schrödinger is equally well known for his thought experiment about the cat in the box who ends up “spread out” in a probabilistic state, neither wholly alive nor wholly dead. Both of these famous images arose from these two men’s dissatisfaction with quantum weirdness and with their assertion that underneath it all, there must be some essentially deterministic world. Even though it was Einstein’s own theories that made quantum mechanics possible, both he and Schrödinger could not bear the idea that the universe was, at its most fundamental level, random.As the Second World War raged, both men struggled to produce a theory that would describe in full the universe’s ultimate design, first as collaborators, then as competitors. They both ultimately failed in their search for a Grand Unified Theory—not only because quantum mechanics is true, but because Einstein and Schrödinger were also missing a key component: of the four forces we recognize today (gravity, electromagnetism, the weak force, and the strong force), only gravity and electromagnetism were known at the time.Despite their failures, though, much of modern physics remains focused on the search for a Grand Unified Theory. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model—the closest thing we have to a unified theory—nearly complete. And while Einstein and Schrödinger tried and failed to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when he was wrong, Einstein couldn’t help but be right.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

The Cosmic Cocktail: Three Parts Dark Matter


Katherine Freese - 2014
    The rest is known as dark matter and dark energy, because their precise identities are unknown. "The Cosmic Cocktail" is the inside story of the epic quest to solve one of the most compelling enigmas of modern science--what is the universe made of?--told by one of today's foremost pioneers in the study of dark matter.Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the field, acclaimed theoretical physicist Katherine Freese recounts the hunt for dark matter, from the discoveries of visionary scientists like Fritz Zwicky--the Swiss astronomer who coined the term "dark matter" in 1933--to the deluge of data today from underground laboratories, satellites in space, and the Large Hadron Collider. Theorists contend that dark matter consists of fundamental particles known as WIMPs, or weakly interacting massive particles. Billions of them pass through our bodies every second without us even realizing it, yet their gravitational pull is capable of whirling stars and gas at breakneck speeds around the centers of galaxies, and bending light from distant bright objects. Freese describes the larger-than-life characters and clashing personalities behind the race to identify these elusive particles.Many cosmologists believe we are on the verge of solving the mystery. "The Cosmic Cocktail" provides the foundation needed to fully fathom this epochal moment in humankind's quest to understand the universe.

Einstein's Shadow: A Black Hole, a Band of Astronomers, and the Quest to See the Unseeable


Seth Fletcher - 2018
    But Shep Doeleman and a global coalition of scientists are on the cusp of doing just that.With exclusive access to the team, journalist Seth Fletcher spent five years following Shep and an extraordinary cast of characters as they assembled the Event Horizon Telescope, a virtual radio observatory the size of the Earth. He witnessed their struggles, setbacks, and breakthroughs, and along the way, he explored the latest thinking on the most profound questions about black holes. Do they represent a limit to our ability to understand reality? Or will they reveal the clues that lead to the long-sought Theory of Everything?Fletcher transforms astrophysics into something exciting, accessible, and immediate, taking us on an incredible adventure to better understand the complexity of our galaxy, the boundaries of human perception and knowledge, and how the messy human endeavor of science really works.Weaving a compelling narrative account of human ingenuity with excursions into cutting-edge science, Einstein’s Shadow is a tale of great minds on a mission to change the way we understand our universe—and our place in it.

What Is Real?: The Unfinished Quest for the Meaning of Quantum Physics


Adam Becker - 2018
    But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's Copenhagen interpretation and dismissed questions about the reality underlying quantum physics as meaningless. A mishmash of solipsism and poor reasoning, Copenhagen endured, as Bohr's students vigorously protected his legacy, and the physics community favored practical experiments over philosophical arguments. As a result, questioning the status quo long meant professional ruin. And yet, from the 1920s to today, physicists like John Bell, David Bohm, and Hugh Everett persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and of the courageous scientists who dared to stand up for truth.

The Hole in the Universe


K.C. Cole - 2001
    C. Cole. Once again, acclaimed science writer K. C. Cole brings the arcane and academic down to the level of armchair scientists in The Hole in the Universe, an entertaining and edifying search for nothing at all. Open the newspaper on any given day and you will read of a newly discovered planet, star, and so on. Yet scientists and mathematicians have spent generations searching the far reaches of the universe for that one elusive state—nothingness. Although this may sound like a simple task, every time the absolute void appears within reach, something new is discovered in its place: a black hole, an undulating string, an additional dimension of space or time—even another universe. A fascinating and literary tour de force, The Hole in the Universe is a virtual romp into the unknown that you never knew wasn't there.

QED: The Strange Theory of Light and Matter


Richard P. Feynman - 1985
    QED--the edited version of four lectures on quantum electrodynamics that Feynman gave to the general public at UCLA as part of the Alix G. Mautner Memorial Lecture series--is perhaps the best example of his ability to communicate both the substance and the spirit of science to the layperson.The focus, as the title suggests, is quantum electrodynamics (QED), the part of the quantum theory of fields that describes the interactions of the quanta of the electromagnetic field-light, X rays, gamma rays--with matter and those of charged particles with one another. By extending the formalism developed by Dirac in 1933, which related quantum and classical descriptions of the motion of particles, Feynman revolutionized the quantum mechanical understanding of the nature of particles and waves. And, by incorporating his own readily visualizable formulation of quantum mechanics, Feynman created a diagrammatic version of QED that made calculations much simpler and also provided visual insights into the mechanisms of quantum electrodynamic processes.In this book, using everyday language, spatial concepts, visualizations, and his renowned "Feynman diagrams" instead of advanced mathematics, Feynman successfully provides a definitive introduction to QED for a lay readership without any distortion of the basic science. Characterized by Feynman's famously original clarity and humor, this popular book on QED has not been equaled since its publication.

A Series of Fortunate Events: Chance and the Making of the Planet, Life, and You


Sean B. Carroll - 2020
    Carroll at his very best.--Bill Bryson, author of The Body: A Guide for Occupants From acclaimed writer and biologist Sean B. Carroll, a rollicking, awe-inspiring story of the surprising power of chance in our lives and the worldWhy is the world the way it is? How did we get here? Does everything happen for a reason or are some things left to chance? Philosophers and theologians have pondered these questions for millennia, but startling scientific discoveries over the past half century are revealing that we live in a world driven by chance. A Series of Fortunate Events tells the story of the awesome power of chance and how it is the surprising source of all the beauty and diversity in the living world.Like every other species, we humans are here by accident. But it is shocking just how many things--any of which might never have occurred--had to happen in certain ways for any of us to exist. From an extremely improbable asteroid impact, to the wild gyrations of the Ice Age, to invisible accidents in our parents' gonads, we are all here through an astonishing series of fortunate events. And chance continues to reign every day over the razor-thin line between our life and death.This is a relatively small book about a really big idea. It is also a spirited tale. Drawing inspiration from Monty Python, Kurt Vonnegut, and other great thinkers, and crafted by one of today's most accomplished science storytellers, A Series of Fortunate Events is an irresistibly entertaining and thought-provoking account of one of the most important but least appreciated facts of life.

Quantum Physics: What Everyone Needs to Know®


Michael G. Raymer - 2017
    However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe.However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.

The Science Book: Big Ideas Simply Explained


Rob Scott Colson - 2014
     The Science Book covers every area of science--astronomy, biology, chemistry, geology, math, and physics, and brings the greatest scientific ideas to life with fascinating text, quirky graphics, and pithy quotes.

College Physics: A Strategic Approach


Randall D. Knight - 2006
    [...] Built from the ground up on a wealth of research into how readers learn physics and how they can be taught more effectively, College Physics leads readers to more proficient and long-lasting problem-solving skills, a deeper and better-connected understanding of the concepts, and a broader picture of the relevance of physics to the world around them. Force and Motion: Concepts of Motion and Mathematical Background, Motion in One Dimension, Vectors and Motion in Two Dimensions, Forces and Newton's Laws of Motion, Applying Newton's Laws, Circular Motion, Orbits, and Gravity, Rotational Motion, Equilibrium and Elasticity. Conservation Laws: Momentum, Energy and Work, Using Energy. Properties of Matter: Thermal Properties Of Matter, Fluids. Oscillations and Waves: Oscillations, Traveling Waves and Sound, Superposition and Standing Waves. For all readers interested in algebra-based college physics.