Book picks similar to
Makers of Mathematics by Stuart Hollingdale
mathematics
math
non-fiction
maths
A Concise History of Mathematics
Dirk Jan Struik - 1948
Students, researchers, historians, specialists — in short, everyone with an interest in mathematics — will find it engrossing and stimulating.Beginning with the ancient Near East, the author traces the ideas and techniques developed in Egypt, Babylonia, China, and Arabia, looking into such manuscripts as the Egyptian Papyrus Rhind, the Ten Classics of China, and the Siddhantas of India. He considers Greek and Roman developments from their beginnings in Ionian rationalism to the fall of Constantinople; covers medieval European ideas and Renaissance trends; analyzes 17th- and 18th-century contributions; and offers an illuminating exposition of 19th century concepts. Every important figure in mathematical history is dealt with — Euclid, Archimedes, Diophantus, Omar Khayyam, Boethius, Fermat, Pascal, Newton, Leibniz, Fourier, Gauss, Riemann, Cantor, and many others.For this latest edition, Dr. Struik has both revised and updated the existing text, and also added a new chapter on the mathematics of the first half of the 20th century. Concise coverage is given to set theory, the influence of relativity and quantum theory, tensor calculus, the Lebesgue integral, the calculus of variations, and other important ideas and concepts. The book concludes with the beginnings of the computer era and the seminal work of von Neumann, Turing, Wiener, and others."The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature Magazine.
The History of Mathematics: A Very Short Introduction
Jacqueline A. Stedall - 2012
Historian Jacqueline Stedall shows that mathematical ideas are far from being fixed, but are adapted and changed by their passage across periods and cultures. The book illuminates some of the varied contexts in which people have learned, used, and handed on mathematics, drawing on fascinating case studies from a range of times and places, including early imperial China, the medieval Islamic world, and nineteenth-century Britain. By drawing out some common threads, Stedall provides an introduction not only to the mathematics of the past but to the history of mathematics as a modern academic discipline.
Introduction to the Theory of Computation
Michael Sipser - 1996
Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.
Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World
Amir Alexander - 2014
With the stroke of a pen the Jesuit fathers banned the doctrine of infinitesimals, announcing that it could never be taught or even mentioned. The concept was deemed dangerous and subversive, a threat to the belief that the world was an orderly place, governed by a strict and unchanging set of rules. If infinitesimals were ever accepted, the Jesuits feared, the entire world would be plunged into chaos.In Infinitesimal, the award-winning historian Amir Alexander exposes the deep-seated reasons behind the rulings of the Jesuits and shows how the doctrine persisted, becoming the foundation of calculus and much of modern mathematics and technology. Indeed, not everyone agreed with the Jesuits. Philosophers, scientists, and mathematicians across Europe embraced infinitesimals as the key to scientific progress, freedom of thought, and a more tolerant society. As Alexander reveals, it wasn't long before the two camps set off on a war that pitted Europe's forces of hierarchy and order against those of pluralism and change.The story takes us from the bloody battlefields of Europe's religious wars and the English Civil War and into the lives of the greatest mathematicians and philosophers of the day, including Galileo and Isaac Newton, Cardinal Bellarmine and Thomas Hobbes, and Christopher Clavius and John Wallis. In Italy, the defeat of the infinitely small signaled an end to that land's reign as the cultural heart of Europe, and in England, the triumph of infinitesimals helped launch the island nation on a course that would make it the world's first modern state.From the imperial cities of Germany to the green hills of Surrey, from the papal palace in Rome to the halls of the Royal Society of London, Alexander demonstrates how a disagreement over a mathematical concept became a contest over the heavens and the earth. The legitimacy of popes and kings, as well as our beliefs in human liberty and progressive science, were at stake-the soul of the modern world hinged on the infinitesimal.
The Little Book of Mathematical Principles, Theories, & Things
Robert Solomon - 2008
Rare Book
Imagining Numbers
Barry Mazur - 2002
This book reveals how anyone can begin to visualize the enigmatic 'imaginary numbers' that first baffled mathematicians in the 16th century.
Six Easy Pieces: Essentials of Physics By Its Most Brilliant Teacher
Richard P. Feynman - 1995
This set couples a book containing the six easiest chapters from Richard P. Feynman's landmark work, Lectures on Physics—specifically designed for the general, non-scientist reader—with the actual recordings of the late, great physicist delivering the lectures on which the chapters are based. Nobel Laureate Feynman gave these lectures just once, to a group of Caltech undergraduates in 1961 and 1962, and these newly released recordings allow you to experience one of the Twentieth Century's greatest minds—as if you were right there in the classroom.
Logicomix: An Epic Search for Truth
Apostolos Doxiadis - 2009
This graphic novel recounts the spiritual odyssey of philosopher Bertrand Russell. In his agonized search for absolute truth, he crosses paths with thinkers like Gottlob Frege, David Hilbert & Kurt Gödel, & finds a passionate student in Ludwig Wittgenstein. But his most ambitious goal—to establish unshakable logical foundations of mathematics—continues to loom before him. Thru love & hate, peace & war, he persists in the mission threatening to claim both his career & happiness, finally driving him to the brink of insanity. This story is at the same time a historical novel & an accessible explication of some of the biggest ideas of mathematics & modern philosophy. With rich characterizations & atmospheric artwork, it spins the pursuit of such ideas into a satisfying tale. Probing, layered, the book throws light on Russell’s inner struggles while setting them in the context of the timeless questions he tried to answer. At its heart, Logicomix is a story about the conflict between ideal rationality & the flawed fabric of reality.
Principles of Mathematical Analysis
Walter Rudin - 1964
The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
The Principia: Mathematical Principles of Natural Philosophy
Isaac Newton - 1687
Even after more than three centuries and the revolutions of Einsteinian relativity and quantum mechanics, Newtonian physics continues to account for many of the phenomena of the observed world, and Newtonian celestial dynamics is used to determine the orbits of our space vehicles.This completely new translation, the first in 270 years, is based on the third (1726) edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms. Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.The illuminating Guide to the Principia by I. Bernard Cohen, along with his and Anne Whitman's translation, will make this preeminent work truly accessible for today's scientists, scholars, and students.
How to Prove It: A Structured Approach
Daniel J. Velleman - 1994
The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5
Introduction to Topology
Bert Mendelson - 1975
It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.
A Brief History of Infinity: The Quest to Think the Unthinkable
Brian Clegg - 2003
Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it's a long way down the street to the chemist, but that's just peanuts to space.' Douglas Adams, Hitch-hiker's Guide to the GalaxyWe human beings have trouble with infinity - yet infinity is a surprisingly human subject. Philosophers and mathematicians have gone mad contemplating its nature and complexity - yet it is a concept routinely used by schoolchildren. Exploring the infinite is a journey into paradox. Here is a quantity that turns arithmetic on its head, making it feasible that 1 = 0. Here is a concept that enables us to cram as many extra guests as we like into an already full hotel. Most bizarrely of all, it is quite easy to show that there must be something bigger than infinity - when it surely should be the biggest thing that could possibly be. Brian Clegg takes us on a fascinating tour of that borderland between the extremely large and the ultimate that takes us from Archimedes, counting the grains of sand that would fill the universe, to the latest theories on the physical reality of the infinite. Full of unexpected delights, whether St Augustine contemplating the nature of creation, Newton and Leibniz battling over ownership of calculus, or Cantor struggling to publicise his vision of the transfinite, infinity's fascination is in the way it brings together the everyday and the extraordinary, prosaic daily life and the esoteric.Whether your interest in infinity is mathematical, philosophical, spiritual or just plain curious, this accessible book offers a stimulating and entertaining read.
Mathematical Mysteries: The Beauty and Magic of Numbers
Calvin C. Clawson - 1996
This recreational math book takes the reader on a fantastic voyage into the world of natural numbers. From the earliest discoveries of the ancient Greeks to various fundamental characteristics of the natural number sequence, Clawson explains fascinating mathematical mysteries in clear and easy prose. He delves into the heart of number theory to see and understand the exquisite relationships among natural numbers, and ends by exploring the ultimate mystery of mathematics: the Riemann hypothesis, which says that through a point in a plane, no line can be drawn parallel to a given line.While a professional mathematician's treatment of number theory involves the most sophisticated analytical tools, its basic ideas are surprisingly easy to comprehend. By concentrating on the meaning behind various equations and proofs and avoiding technical refinements, Mathematical Mysteries lets the common reader catch a glimpse of this wonderful and exotic world.
Quantum Computing Since Democritus
Scott Aaronson - 2013
Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.