Possible Minds: 25 Ways of Looking at AI


John Brockman - 2019
    It is the Second Coming and the Apocalypse at the same time: Good AI versus evil AI." --John BrockmanMore than sixty years ago, mathematician-philosopher Norbert Wiener published a book on the place of machines in society that ended with a warning: "we shall never receive the right answers to our questions unless we ask the right questions.... The hour is very late, and the choice of good and evil knocks at our door."In the wake of advances in unsupervised, self-improving machine learning, a small but influential community of thinkers is considering Wiener's words again. In Possible Minds, John Brockman gathers their disparate visions of where AI might be taking us.The fruit of the long history of Brockman's profound engagement with the most important scientific minds who have been thinking about AI--from Alison Gopnik and David Deutsch to Frank Wilczek and Stephen Wolfram--Possible Minds is an ideal introduction to the landscape of crucial issues AI presents. The collision between opposing perspectives is salutary and exhilarating; some of these figures, such as computer scientist Stuart Russell, Skype co-founder Jaan Tallinn, and physicist Max Tegmark, are deeply concerned with the threat of AI, including the existential one, while others, notably robotics entrepreneur Rodney Brooks, philosopher Daniel Dennett, and bestselling author Steven Pinker, have a very different view. Serious, searching and authoritative, Possible Minds lays out the intellectual landscape of one of the most important topics of our time.

Artificial Intelligence and Machine Learning for Business: A No-Nonsense Guide to Data Driven Technologies


Steven Finlay - 2021
    They are being applied across many industries to increase profits, reduce costs, save lives and improve customer experiences. Consequently, organizations that understand these tools and know how to use them are benefiting at the expense of their rivals.Artificial Intelligence and Machine Learning for Business cuts through the hype and technical jargon that is often associated with these subjects. It delivers a simple and concise introduction for managers and business people. The focus is on practical application and how to work with technical specialists (data scientists) to maximize the benefits of these technologies.This revised and fully updated edition contains several new sections and chapters, covering a broader set of topics than before, but retains the no-nonsense style of the original.Steven Finlay is a data scientist and author with more than 20 years’ experience of developing practical, business focused, analytical solutions. He holds a PhD in management science and is an honorary research fellow at Lancaster University in the UK.

The Computer and the Brain


John von Neumann - 1958
    This work represents the views of a mathematician on the analogies between computing machines and the living human brain.

Machines that Think: Everything you need to know about the coming age of artificial intelligence (New Scientist Instant Expert)


New Scientist - 2017
    So are we on the edge of an AI-pocalypse, with super-intelligent devices superseding humanity, as predicted by Stephen Hawking? Or will this herald a kind of Utopia, with machines doing a far better job at complex tasks than us? You might not realise it, but you interact with AIs every day. They route your phone calls, approve your credit card transactions and help your doctor interpret results. Driverless cars will soon be on the roads with a decision-making computer in charge. But how do machines actually think and learn? In Machines That Think, AI experts and New Scientist explore how artificial ingence helps us understand human intelligence, machines that compose music and write stories - and ask if AI is really a threat.--

Make Your Own Neural Network


Tariq Rashid - 2016
     Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.

The Spatial Web: How Web 3.0 Will Connect Humans, Machines, and AI to Transform the World


Gabriel Rene - 2019
    Blade Runner, The Matrix, Star Wars, Avatar, Star Trek, Ready Player One and Avengers show us futuristic worlds where holograms, intelligent robots, smart devices, virtual avatars, digital transactions, and universe-scale teleportation work together perfectly, somehow seamlessly combining the virtual and the physical with the mechanical and the biological. Science fiction has done an excellent job describing a vision of the future where the digital and physical merge naturally into one — in a way that just works everywhere, for everyone. However, none of these visionary fictional works go so far as to describe exactly how this would actually be accomplished. While it has inspired many of us to ask the question—How do we enable science fantasy to become....science fact? The Spatial Web achieves this by first describing how exponentially powerful computing technologies are creating a great “Convergence.” How Augmented and Virtual Reality will enable us to overlay our information and imaginations onto the world. How Artificial Intelligence will infuse the environments and objects around us with adaptive intelligence. How the Internet of Things and Robotics will enable our vehicles, appliances, clothing, furniture, and homes to become connected and embodied with the power to see, feel, hear, smell, touch and move things in the world, and how Blockchain and Cryptocurrencies will secure our data and enable real-time transactions between the human, machine and virtual economies of the future. The book then dives deeply into the challenges and shortcomings of the World Wide Web, the rise of fake news and surveillance capitalism in Web 2.0 and the risk of algorithmic terrorism and biological hacking and “fake-reality” in Web 3.0. It raises concerns about the threat that emerging technologies pose in the hands of rogue actors whether human, algorithmic, corporate or state-sponsored and calls for common sense governance and global cooperation. It calls for business leaders, organizations and governments to not only support interoperable standards for software code, but critically, for ethical, and social codes as well. Authors Gabriel René and Dan Mapes describe in vivid detail how a new “spatial” protocol is required in order to connect the various exponential technologies of the 21st century into an integrated network capable of tracking and managing the real-time activities of our cities, monitoring and adjusting the supply chains that feed them, optimizing our farms and natural resources, automating our manufacturing and distribution, transforming marketing and commerce, accelerating our global economies, running advanced planet-scale simulations and predictions, and even bridging the gap between our interior individual reality and our exterior collective one. Enabling the ability for humans, machines and AI to communicate, collaborate and coordinate activities in the world at a global scale and how the thoughtful application of these technologies could lead to an unprecedented opportunity to create a truly global “networked” civilization or "Smart World.” The book artfully shifts between cyberpunk futurism, cautionary tale-telling, and life-affirming call-to-arms. It challenges us to consider the importance of today’s technological choices as individuals, organizations, and as a species, as we face the historic opportunity we have to transform the web, the world, and our very definition of reality.

What Computers Still Can't Do: A Critique of Artificial Reason


Hubert L. Dreyfus - 1972
    The world has changed since then. Today it is clear that "good old-fashioned AI," based on the idea of using symbolic representations to produce general intelligence, is in decline (although several believers still pursue its pot of gold), and the focus of the AI community has shifted to more complex models of the mind. It has also become more common for AI researchers to seek out and study philosophy. For this edition of his now classic book, Dreyfus has added a lengthy new introduction outlining these changes and assessing the paradigms of connectionism and neural networks that have transformed the field. At a time when researchers were proposing grand plans for general problem solvers and automatic translation machines, Dreyfus predicted that they would fail because their conception of mental functioning was naive, and he suggested that they would do well to acquaint themselves with modern philosophical approaches to human being. "What Computers Still Can't Do" was widely attacked but quietly studied. Dreyfus's arguments are still provocative and focus our attention once again on what it is that makes human beings unique.

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Rethinking Consciousness: A Scientific Theory of Subjective Experience


Michael S.A. Graziano - 2019
    It also may have led to consciousness. Tracing evolution over millions of years, Michael S. A. Graziano uses examples from the natural world to show how neurons first allowed animals to develop simple forms of attention: taking in messages from the environment, prioritizing them, and responding as necessary.Then some animals evolved covert attention—a roving mental focus that can take in information apart from where the senses are pointed, like hearing sirens at a distance or recalling a memory.Graziano proposes that in order to monitor and control this specialized attention, the brain evolved a simplified model of it—a cartoonish self-description depicting an internal essence with a capacity for knowledge and experience. In other words, consciousness.In this eye-opening work drawn from his and other scientists’ experiments, Graziano accessibly explores how this sense of an inner being led to empathy and formed us into social beings. The theory may point the way to engineers for building consciousness artificially, and even someday taking the natural consciousness of a person and uploading it into a machine for a digital afterlife. Graziano discusses what a future with artificial conscious might be like, including both advantages and risks, and what AI might mean for our evolutionary future.

Connectome: How the Brain's Wiring Makes Us Who We Are


Sebastian Seung - 2012
    Is it in our genes? The structure of our brains? Our genome may determine our eye color and even aspects of our personality. But our friendships, failures, and passions also shape who we are. The question is: how?Sebastian Seung, a dynamic professor at MIT, is on a quest to discover the biological basis of identity. He believes it lies in the pattern of connections between the brain’s neurons, which change slowly over time as we learn and grow. The connectome, as it’s called, is where our genetic inheritance intersects with our life experience. It’s where nature meets nurture.Seung introduces us to the dedicated researchers who are mapping the brain’s connections, neuron by neuron, synapse by synapse. It is a monumental undertaking—the scientific equivalent of climbing Mount Everest—but if they succeed, it could reveal the basis of personality, intelligence, memory, and perhaps even mental disorders. Many scientists speculate that people with anorexia, autism, and schizophrenia are "wired differently," but nobody knows for sure. The brain’s wiring has never been clearly seen.In sparklingly clear prose, Seung reveals the amazing technological advances that will soon help us map connectomes. He also examines the evidence that these maps will someday allow humans to "upload" their minds into computers, achieving a kind of immortality.Connectome is a mind-bending adventure story, told with great passion and authority. It presents a daring scientific and technological vision for at last understanding what makes us who we are. Welcome to the future of neuroscience.

Making Games with Python & Pygame


Al Sweigart - 2012
    Each chapter gives you the complete source code for a new game and teaches the programming concepts from these examples. The book is available under a Creative Commons license and can be downloaded in full for free from http: //inventwithpython.com/pygame This book was written to be understandable by kids as young as 10 to 12 years old, although it is great for anyone of any age who has some familiarity with Python.

Mindware: An Introduction to the Philosophy of Cognitive Science


Andy Clark - 2000
    In eight short chapters it tells a story and invites the reader to join in some up-to-the-minute conceptual discussion of the key issues, problems, and opportunities in cognitive science. The story is about the search for a cognitive scientific understanding of mind. It is presented as a no-holds-barred journey from early work in Artificial Intelligence, through connectionist (artificial neural network) counter-visions, and onto neuroscience artificial life, dynamics and robotics. The journey ends with some wide-ranging and provacative speculation about the role of technology and the changing nature of the human mind itself.Each chapter is organized as an initial sketch of a research program or theme, followed by a substantial discussion section in which specific problems and issues (both familiear and cutting-edge) are raised and pursued. Discussion topics include mental causation, the hardware/software distinction, the relations between life and mind, the nature of perception, cognition and action, and the continuity (or otherwise) of high-level human intelligence with other forms of adaptive response. Classic topics are treated alongside the newer ones in an integrated treatment of the various discussions. The sketches and discussions are accompanied by numerous figures and boxed sections, and followed by suggestions for futher reading.

Rationality: From AI to Zombies


Eliezer Yudkowsky - 2015
    Real rationality, of the sort studied by psychologists, social scientists, and mathematicians. The kind of rationality where you make good decisions, even when it's hard; where you reason well, even in the face of massive uncertainty; where you recognize and make full use of your fuzzy intuitions and emotions, rather than trying to discard them. In "Rationality: From AI to Zombies," Eliezer Yudkowsky explains the science underlying human irrationality with a mix of fables, argumentative essays, and personal vignettes. These eye-opening accounts of how the mind works (and how, all too often, it doesn't!) are then put to the test through some genuinely difficult puzzles: computer scientists' debates about the future of artificial intelligence (AI), physicists' debates about the relationship between the quantum and classical worlds, philosophers' debates about the metaphysics of zombies and the nature of morality, and many more. In the process, "Rationality: From AI to Zombies" delves into the human significance of correct reasoning more deeply than you'll find in any conventional textbook on cognitive science or philosophy of mind. A decision theorist and researcher at the Machine Intelligence Research Institute, Yudkowsky published earlier drafts of his writings to the websites Overcoming Bias and Less Wrong. "Rationality: From AI to Zombies" compiles six volumes of Yudkowsky's essays into a single electronic tome. Collectively, these sequences of linked essays serve as a rich and lively introduction to the science—and the art—of human rationality.

Consciousness: Confessions of a Romantic Reductionist


Christof Koch - 2012
    This engaging book--part scientific overview, part memoir, part futurist speculation--describes Koch's search for an empirical explanation for consciousness. Koch recounts not only the birth of the modern science of consciousness but also the subterranean motivation for his quest--his instinctual (if "romantic") belief that life is meaningful.Koch describes his own groundbreaking work with Francis Crick in the 1990s and 2000s and the gradual emergence of consciousness (once considered a "fringy" subject) as a legitimate topic for scientific investigation. Present at this paradigm shift were Koch and a handful of colleagues, including Ned Block, David Chalmers, Stanislas Dehaene, Giulio Tononi, Wolf Singer, and others. Aiding and abetting it were new techniques to listen in on the activity of individual nerve cells, clinical studies, and brain-imaging technologies that allowed safe and noninvasive study of the human brain in action.Koch gives us stories from the front lines of modern research into the neurobiology of consciousness as well as his own reflections on a variety of topics, including the distinction between attention and awareness, the unconscious, how neurons respond to Homer Simpson, the physics and biology of free will, dogs, Der Ring des Nibelungen, sentient machines, the loss of his belief in a personal God, and sadness. All of them are signposts in the pursuit of his life's work--to uncover the roots of consciousness.

Neural Networks and Deep Learning


Michael Nielsen - 2013
    The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.