Book picks similar to
Mastering OpenCV with Practical Computer Vision Projects by Shervin Emami
computer
engineer
the-list-0
books-wantex
Mastering Emacs
Mickey Petersen - 2015
In the Mastering Emacs ebook you will learn the answers to all the concepts that take weeks, months or even years to truly learn, all in one place.“Emacs is such a hard editor to learn”But why is it so hard to learn? As it turns out, it's almost always the same handful of issues that everyone faces.If you have tried to learn Emacs you will have struggled with the same problems everyone faces, and few tutorials to see you through it.I have dedicated the first half of the book to explaining the essence of Emacs — and in doing so, how to overcome these issues:Memorizing Emacs’s keys: You will learn Emacs one key at a time, starting with the arrow keys. To feel productive in Emacs, it’s important you start on an equal footing — without too many new concepts and keys to memorize. Each chapter will introduce more keys and concepts so you can learn at your own pace. Discovering new modes and features: Emacs is a self-documenting editor, and I will teach you how to use the apropos, info, and describe system to discover new modes and features, or help you find things you forgot! Customizing Emacs: You don’t have to learn Emacs Lisp to alter a lot of Emacs’s functionality. Most changes you want to make are possible using Emacs’s Customize interface and I will show you how to use it efficiently. Understanding the terminology: Emacs is so old it predates almost every other editor and all modern user interfaces. I have an entire chapter dedicated to the unique terminology in Emacs; how it is different from other editors, and what that means to you.
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Aurélien Géron - 2017
Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details
Laravel: Up and Running: A Framework for Building Modern PHP Apps
Matt Stauffer - 2016
This rapid application development framework and its vast ecosystem of tools let you quickly build new sites and applications with clean, readable code. With this practical guide, Matt Stauffer--a leading teacher and developer in the Laravel community--provides the definitive introduction to one of today's most popular web frameworks.The book's high-level overview and concrete examples will help experienced PHP web developers get started with Laravel right away. By the time you reach the last page, you should feel comfortable writing an entire application in Laravel from scratch.Dive into several features of this framework, including:Blade, Laravel's powerful, custom templating toolTools for gathering, validating, normalizing, and filtering user-provided dataLaravel's Eloquent ORM for working with the application's databasesThe Illuminate request object, and its role in the application lifecyclePHPUnit, Mockery, and PHPSpec for testing your PHP codeLaravel's tools for writing JSON and RESTful APIsInterfaces for file system access, sessions, cookies, caches, and searchTools for implementing queues, jobs, events, and WebSocket event publishingLaravel's specialty packages: Scout, Passport, Cashier, Echo, Elixir, Valet, and Socialite
The Art of Computer Programming, Volume 1: Fundamental Algorithms
Donald Ervin Knuth - 1973
-Byte, September 1995 I can't begin to tell you how many pleasurable hours of study and recreation they have afforded me! I have pored over them in cars, restaurants, at work, at home... and even at a Little League game when my son wasn't in the line-up. -Charles Long If you think you're a really good programmer... read [Knuth's] Art of Computer Programming... You should definitely send me a resume if you can read the whole thing. -Bill Gates It's always a pleasure when a problem is hard enough that you have to get the Knuths off the shelf. I find that merely opening one has a very useful terrorizing effect on computers. -Jonathan Laventhol This first volume in the series begins with basic programming concepts and techniques, then focuses more particularly on information structures-the representation of information inside a computer, the structural relationships between data elements and how to deal with them efficiently. Elementary applications are given to simulation, numerical methods, symbolic computing, software and system design. Dozens of simple and important algorithms and techniques have been added to those of the previous edition. The section on mathematical preliminaries has been extensively revised to match present trends in research. Ebook (PDF version) produced by Mathematical Sciences Publishers (MSP), http: //msp.org
The Most Human Human: What Talking with Computers Teaches Us About What It Means to Be Alive
Brian Christian - 2011
Its starting point is the annual Turing Test, which pits artificial intelligence programs against people to determine if computers can “think.”Named for computer pioneer Alan Turing, the Turing Test convenes a panel of judges who pose questions—ranging anywhere from celebrity gossip to moral conundrums—to hidden contestants in an attempt to discern which is human and which is a computer. The machine that most often fools the panel wins the Most Human Computer Award. But there is also a prize, bizarre and intriguing, for the Most Human Human.In 2008, the top AI program came short of passing the Turing Test by just one astonishing vote. In 2009, Brian Christian was chosen to participate, and he set out to make sure Homo sapiens would prevail.The author’s quest to be deemed more human than a computer opens a window onto our own nature. Interweaving modern phenomena like customer service “chatbots” and men using programmed dialogue to pick up women in bars with insights from fields as diverse as chess, psychiatry, and the law, Brian Christian examines the philosophical, biological, and moral issues raised by the Turing Test.One central definition of human has been “a being that could reason.” If computers can reason, what does that mean for the special place we reserve for humanity?
Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People
Aditya Y. Bhargava - 2015
The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.
Programming Groovy
Venkat Subramaniam - 2008
But recently, the industry has turned to dynamic languages for increased productivity and speed to market.Groovy is one of a new breed of dynamic languages that run on the Java platform. You can use these new languages on the JVM and intermix them with your existing Java code. You can leverage your Java investments while benefiting from advanced features including true Closures, Meta Programming, the ability to create internal DSLs, and a higher level of abstraction.If you're an experienced Java developer, Programming Groovy will help you learn the necessary fundamentals of programming in Groovy. You'll see how to use Groovy to do advanced programming including using Meta Programming, Builders, Unit Testing with Mock objects, processing XML, working with Databases and creating your own Domain-Specific Languages (DSLs).
Python Pocket Reference
Mark Lutz - 1998
Hundreds of thousands of Python developers around the world rely on Python for general-purpose tasks, Internet scripting, systems programming, user interfaces, and product customization. Available on all major computing platforms, including commercial versions of Unix, Linux, Windows, and Mac OS X, Python is portable, powerful and remarkable easy to use.With its convenient, quick-reference format, "Python Pocket Reference," 3rd Edition is the perfect on-the-job reference. More importantly, it's now been refreshed to cover the language's latest release, Python 2.4. For experienced Python developers, this book is a compact toolbox that delivers need-to-know information at the flip of a page. This third edition also includes an easy-lookup index to help developers find answers fast!Python 2.4 is more than just optimization and library enhancements; it's also chock full of bug fixes and upgrades. And these changes are addressed in the "Python Pocket Reference," 3rd Edition. New language features, new and upgraded built-ins, and new and upgraded modules and packages--they're all clarified in detail.The "Python Pocket Reference," 3rd Edition serves as the perfect companion to "Learning Python" and "Programming Python."
Sinatra: Up and Running
Alan Harris - 2011
With this concise book, you will quickly gain working knowledge of Sinatra and its minimalist approach to building both standalone and modular web applications.
Sinatra serves as a lightweight wrapper around Rack middleware, with syntax that maps closely to functions exposed by HTTP verbs, which makes it ideal for web services and APIs. If you have experience building applications with Ruby, you’ll quickly learn language fundamentals and see under-the-hood techniques, with the help of several practical examples. Then you’ll get hands-on experience with Sinatra by building your own blog engine.
Learn Sinatra’s core concepts, and get started by building a simple application
Create views, manage sessions, and work with Sinatra route definitions
Become familiar with the language’s internals, and take a closer look at Rack
Use different subclass methods for building flexible and robust architectures
Put Sinatra to work: build a blog that takes advantage of service hooks provided by the GitHub API
The Modern Web: Multi-Device Web Development with HTML5, CSS3, and JavaScript
Peter Gasston - 2013
When users can browse the Web on a three-inch phone screen as easily as on a fifty-inch HDTV, what's a developer to do?Peter Gasston's The Modern Web will guide you through the latest and most important tools of device-agnostic web development, including HTML5, CSS3, and JavaScript. His plain-English explanations and practical examples emphasize the techniques, principles, and practices that you'll need to easily transcend individual browser quirks and stay relevant as these technologies are updated.Learn how to:Plan your content so that it displays fluidly across multiple devices Design websites to interact with devices using the most up-to-date APIs, including Geolocation, Orientation, and Web Storage Incorporate cross-platform audio and video without using troublesome plug-ins Make images and graphics scalable on high-resolution devices with SVG Use powerful HTML5 elements to design better formsTurn outdated websites into flexible, user-friendly ones that take full advantage of the unique capabilities of any device or browser. With the help of The Modern Web, you'll be ready to navigate the front lines of device-independent development.
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
An Introduction to Functional Programming Through Lambda Calculus
Greg Michaelson - 1989
This well-respected text offers an accessible introduction to functional programming concepts and techniques for students of mathematics and computer science. The treatment is as nontechnical as possible, and it assumes no prior knowledge of mathematics or functional programming. Cogent examples illuminate the central ideas, and numerous exercises appear throughout the text, offering reinforcement of key concepts. All problems feature complete solutions.
Computer Systems: A Programmer's Perspective
Randal E. Bryant - 2002
Often, computer science and computer engineering curricula don't provide students with a concentrated and consistent introduction to the fundamental concepts that underlie all computer systems. Traditional computer organization and logic design courses cover some of this material, but they focus largely on hardware design. They provide students with little or no understanding of how important software components operate, how application programs use systems, or how system attributes affect the performance and correctness of application programs. - A more complete view of systems - Takes a broader view of systems than traditional computer organization books, covering aspects of computer design, operating systems, compilers, and networking, provides students with the understanding of how programs run on real systems. - Systems presented from a programmers perspective - Material is presented in such a way that it has clear benefit to application programmers, students learn how to use this knowledge to improve program performance and reliability. They also become more effective in program debugging, because t
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
Beyond the Twelve-Factor App Exploring the DNA of Highly Scalable, Resilient Cloud Applications
Kevin Hoffman - 2016
Cloud computing is rapidly transitioning from a niche technology embraced by startups and tech-forward companies to the foundation upon which enterprise systems build their future. In order to compete in today’s marketplace, organizations large and small are embracing cloud architectures and practices.