This Idea Must Die: Scientific Theories That Are Blocking Progress


John Brockman - 2015
    In the past, discoveries often had to wait for the rise of the next generation to see questions in a new light and let go of old truisms. Today, in a world that is defined by a rapid rate of change, staying on the cutting edge has as much to do with shedding outdated notions as adopting new ones. In this spirit, John Brockman, publisher of the online salon Edge.org ("the world's smartest website"—The Guardian), asked 175 of the world's most influential scientists, economists, artists, and philosophers: What scientific idea is ready for retirement?Jared Diamond explores the diverse ways that new ideas emerge * Nassim Nicholas Taleb takes down the standard deviation * Richard Thaler and novelist Ian McEwan reveal the usefulness of "bad" ideas * Steven Pinker dismantles the working theory of human behavior * Richard Dawkins renounces essentialism * Sherry Turkle reevaluates our expectations of artificial intelligence * Physicist Andrei Linde suggests that our universe and its laws may not be as unique as we think * Martin Rees explains why scientific understanding is a limitless goal * Alan Guth rethinks the origins of the universe * Sam Harris argues that our definition of science is too narrow * Nobel Prize winner Frank Wilczek disputes the division between mind and matter * Lawrence Krauss challenges the notion that the laws of physics were preordained * plus contributions from Daniel Goleman, Mihaly Csikszentmihalyi, Nicholas Carr, Rebecca Newberger Goldstein, Matt Ridley, Stewart Brand, Sean Carroll, Daniel C. Dennett, Helen Fisher, Douglas Rushkoff, Lee Smolin, Kevin Kelly, Freeman Dyson, and others.

Genome: the Autobiography of a Species in 23 Chapters


Matt Ridley - 1999
    

Precalculus Mathematics in a Nutshell: Geometry, Algebra, Trigonometry


George F. Simmons - 1981
    . . Algebra's importance lies in the student's future. . . as essential preparation for the serious study of science, engineering, economics, or for more advanced types of mathematics. . . The primary importance of trigonometry is not in its applications to surveying and navigation, or in making computations about triangles, but rather in the mathematical description of vibrations, rotations, and periodic phenomena of all kinds, including light, sound, alternating currents, and the orbits of the planets around the sun. In this brief, clearly written book, the essentials of geometry, algebra, and trigonometry are pulled together into three complementary and convenient small packages, providing an excellent preview and review for anyone who wishes to prepare to master calculus with a minimum of misunderstanding and wasted time and effort. Students and other readers will find here all they need to pull them through.

Broca's Brain: Reflections on the Romance of Science


Carl Sagan - 1979
    In his delightfully down-to-earth style, he explores & explains a mind-boggling future of intelligent robots, extraterrestrial life & its consquences, & other provocative, fascinating quandries of the future we want to see today.

Mathematics and Its History


John Stillwell - 1997
    Even when dealing with standard material, Stillwell manages to dramatize it and to make it worth rethinking. In short, his book is a splendid addition to the genre of works that build royal roads to mathematical culture for the many." (Mathematical Intelligencer)This second edition includes new chapters on Chinese and Indian number theory, on hypercomplex numbers, and on algebraic number theory. Many more exercises have been added, as well as commentary to the exercises explaining how they relate to the preceding section, and how they foreshadow later topics.

An Essay Concerning Human Understanding


John Locke - 1690
    

The Trouble with Physics: The Rise of String Theory, the Fall of a Science and What Comes Next


Lee Smolin - 2006
    For more than two centuries, our understanding of the laws of nature expanded rapidly. But today, despite our best efforts, we know nothing more about these laws than we knew in the 1970s. Why is physics suddenly in trouble? And what can we do about it?One of the major problems, according to Smolin, is string theory: an ambitious attempt to formulate a “theory of everything” that explains all the particles and forces of nature and how the universe came to be. With its exotic new particles and parallel universes, string theory has captured the public’s imagination and seduced many physicists.But as Smolin reveals, there’s a deep flaw in the theory: no part of it has been tested, and no one knows how to test it. In fact, the theory appears to come in an infinite number of versions, meaning that no experiment will ever be able to prove it false. As a scientific theory, it fails. And because it has soaked up the lion’s share of funding, attracted some of the best minds, and effectively penalized young physicists for pursuing other avenues, it is dragging the rest of physics down with it.With clarity, passion, and authority, Smolin charts the rise and fall of string theory and takes a fascinating look at what will replace it. A group of young theorists has begun to develop exciting ideas that, unlike string theory, are testable. Smolin not only tells us who and what to watch for in the coming years, he offers novel solutions for seeking out and nurturing the best new talent—giving us a chance, at long last, of finding the next Einstein.

Warped Passages: Unraveling the Mysteries of the Universe's Hidden Dimensions


Lisa Randall - 2005
    It may hide additional dimensions of space other than the familier three we recognize. There might even be another universe adjacent to ours, invisible and unattainable . . . for now.Warped Passages is a brilliantly readable and altogether exhilarating journey that tracks the arc of discovery from early twentieth-century physics to the razor's edge of modern scientific theory. One of the world's leading theoretical physicists, Lisa Randall provides astonishing scientific possibilities that, until recently, were restricted to the realm of science fiction. Unraveling the twisted threads of the most current debates on relativity, quantum mechanics, and gravity, she explores some of the most fundamental questions posed by Nature—taking us into the warped, hidden dimensions underpinning the universe we live in, demystifying the science of the myriad worlds that may exist just beyond our own.

Power, Sex, Suicide: Mitochondria and the Meaning of Life


Nick Lane - 2005
    Indeed, these tiny structures inside our cells are important beyond imagining. Without mitochondria, we would have no cell suicide, no sculpting of embryonic shape, no sexes, no menopause, no aging.In this fascinating and thought-provoking book, Nick Lane brings together the latest research in this exciting field to show how our growing insight into mitochondria has shed light on how complex life evolved, why sex arose (why don't we just bud?), and why we age and die. These findings are of fundamental importance, both in understanding life on Earth, but also in controlling our own illnesses, and delaying our degeneration and death. Readers learn that two billion years ago, mitochondria were probably bacteria living independent lives and that their capture within larger cells was a turning point in the evolution of life, enabling the development of complex organisms. Lane describes how mitochondria have their own DNA and that its genes mutate much faster than those in the nucleus. This high mutation rate lies behind our aging and certain congenital diseases. The latest research suggests that mitochondria play a key role in degenerative diseases such as cancer. We also discover that mitochondrial DNA is passed down almost exclusively via the female line. That's why it has been used by some researchers to trace human ancestry daughter-to-mother, to "Mitochondrial Eve," giving us vital information about our evolutionary history.Written by Nick Lane, a rising star in popular science, Power, Sex, Suicide is the first book for general readers on the nature and function of these tiny, yet fascinating structures.

Against the Gods: The Remarkable Story of Risk


Peter L. Bernstein - 1996
    Peter Bernstein has written a comprehensive history of man's efforts to understand risk and probability, beginning with early gamblers in ancient Greece, continuing through the 17th-century French mathematicians Pascal and Fermat and up to modern chaos theory. Along the way he demonstrates that understanding risk underlies everything from game theory to bridge-building to winemaking.

The Calculus Story: A Mathematical Adventure


David Acheson - 2017
    It is the mathematical method for the analysis of things that change, and since in the natural world we are surrounded by change, the development of calculus was a huge breakthrough in the history of mathematics. But it is also something of a mathematical adventure, largely because of the way infinity enters at virtually every twist and turn...In The Calculus Story David Acheson presents a wide-ranging picture of calculus and its applications, from ancient Greece right up to the present day. Drawing on their original writings, he introduces the people who helped to build our understanding of calculus. With a step by step treatment, he demonstrates how to start doing calculus, from the very beginning.

A Little History of Science


William Bynum - 2012
    It tells us about the infinite reaches of space, the tiniest living organism, the human body, the history of Earth. People have always been doing science because they have always wanted to make sense of the world and harness its power. From ancient Greek philosophers through Einstein and Watson and Crick to the computer-assisted scientists of today, men and women have wondered, examined, experimented, calculated, and sometimes made discoveries so earthshaking that people understood the world—or themselves—in an entirely new way.This inviting book tells a great adventure story: the history of science. It takes readers to the stars through the telescope, as the sun replaces the earth at the center of our universe. It delves beneath the surface of the planet, charts the evolution of chemistry's periodic table, introduces the physics that explain electricity, gravity, and the structure of atoms. It recounts the scientific quest that revealed the DNA molecule and opened unimagined new vistas for exploration.Emphasizing surprising and personal stories of scientists both famous and unsung, A Little History of Science traces the march of science through the centuries. The book opens a window on the exciting and unpredictable nature of scientific activity and describes the uproar that may ensue when scientific findings challenge established ideas. With delightful illustrations and a warm, accessible style, this is a volume for young and old to treasure together.

A Beginner's Guide to Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science


Michael S. Schneider - 1994
    This is a new view of mathematics, not the one we learned at school but a comprehensive guide to the patterns that recur through the universe and underlie human affairs. A Beginner's Guide to Constructing, the Universe shows you: Why cans, pizza, and manhole covers are round.Why one and two weren't considered numbers by the ancient Greeks.Why squares show up so often in goddess art and board games.What property makes the spiral the most widespread shape in nature, from embryos and hair curls to hurricanes and galaxies. How the human body shares the design of a bean plant and the solar system. How a snowflake is like Stonehenge, and a beehive like a calendar. How our ten fingers hold the secrets of both a lobster a cathedral, and much more.

Introduction to Electrodynamics


David J. Griffiths - 1981
    This work offers accesible coverage of the fundamentals of electrodynamics, enhanced with with discussion points, examples and exercises.

Gamma: Exploring Euler's Constant


Julian Havil - 2003
    Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"