Zero: The Biography of a Dangerous Idea


Charles Seife - 2000
    For centuries, the power of zero savored of the demonic; once harnessed, it became the most important tool in mathematics. Zero follows this number from its birth as an Eastern philosophical concept to its struggle for acceptance in Europe and its apotheosis as the mystery of the black hole. Today, zero lies at the heart of one of the biggest scientific controversies of all time, the quest for the theory of everything. Elegant, witty, and enlightening, Zero is a compelling look at the strangest number in the universe and one of the greatest paradoxes of human thought.

To Explain the World: The Discovery of Modern Science


Steven Weinberg - 2015
    He shows that the scientists of ancient and medieval times not only did not understand what we understand about the world—they did not understand what there is to understand, or how to understand it. Yet over the centuries, through the struggle to solve such mysteries as the curious backward movement of the planets and the rise and fall of the tides, the modern discipline of science eventually emerged. Along the way, Weinberg examines historic clashes and collaborations between science and the competing spheres of religion, technology, poetry, mathematics, and philosophy.An illuminating exploration of the way we consider and analyze the world around us, To Explain the World is a sweeping, ambitious account of how difficult it was to discover the goals and methods of modern science, and the impact of this discovery on human knowledge and development.

What Is Real?: The Unfinished Quest for the Meaning of Quantum Physics


Adam Becker - 2018
    But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's Copenhagen interpretation and dismissed questions about the reality underlying quantum physics as meaningless. A mishmash of solipsism and poor reasoning, Copenhagen endured, as Bohr's students vigorously protected his legacy, and the physics community favored practical experiments over philosophical arguments. As a result, questioning the status quo long meant professional ruin. And yet, from the 1920s to today, physicists like John Bell, David Bohm, and Hugh Everett persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and of the courageous scientists who dared to stand up for truth.

The Man Who Knew Infinity: A Life of the Genius Ramanujan


Robert Kanigel - 1991
    Hardy, in the years before World War I. Through their eyes the reader is taken on a journey through numbers theory. Ramanujan would regularly telescope 12 steps of logic into two - the effect is said to be like Dr Watson in the train of some argument by Sherlock Holmes. The language of symbols and infinitely large (and small) regions of mathematics should be rendered with clarity for the general reader.

The Lunar Men


Jenny Uglow - 2002
    Their "Lunar Society" included Joseph Priestley, the chemist who isolated oxygen; James Watt, the Scottish inventor of the steam engine; and Josiah Wedgwood, whose manufacture of pottery created the industrial model for the next century. Joined by other "toymakers" and scholarly tinkerers, they concocted schemes for building great canals and harnessing the power of electricity, coined words such as "hydrogen" and "iridescent," shared theories and bank accounts, fended off embezzlers and industrial spies, and forged a fine "democracy of knowledge." And they had a fine time doing so, proving that scholars need not be dullards or eccentrics asocial. Uglow's spirited look at this group of remarkable "lunaticks" captures a critical, short-lived moment of early modern history. Readers who share their conviction that knowledge brings power will find this book a rewarding adventure. --Gregory McNamee

The Principia: Mathematical Principles of Natural Philosophy


Isaac Newton - 1687
    Even after more than three centuries and the revolutions of Einsteinian relativity and quantum mechanics, Newtonian physics continues to account for many of the phenomena of the observed world, and Newtonian celestial dynamics is used to determine the orbits of our space vehicles.This completely new translation, the first in 270 years, is based on the third (1726) edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms. Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.The illuminating Guide to the Principia by I. Bernard Cohen, along with his and Anne Whitman's translation, will make this preeminent work truly accessible for today's scientists, scholars, and students.

The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics


Leonard Susskind - 2008
    Most scientists didn't recognize the import of Hawking's claims, but Leonard Susskind and Gerard t'Hooft realized the threat, and responded with a counterattack that changed the course of physics.The Black Hole War is the thrilling story of their united effort to reconcile Hawking's revolutionary theories of black holes with their own sense of reality -- effort that would eventually result in Hawking admitting he was wrong, paying up, and Susskind and t'Hooft realizing that our world is a hologram projected from the outer boundaries of space.A brilliant book about modern physics, quantum mechanics, the fate of stars and the deep mysteries of black holes, Leonard Susskind's account of the Black Hole War is mind-bending and exhilarating reading.

Parallax: The Race to Measure the Cosmos


Alan W. Hirshfeld - 2001
    Not until the nineteenth century would three men, armed with the best telescopes of their age, race to conquer this astronomical Everest. Parallax tells the fast-moving story of their contest, which ended in a dead heat. Against a sweeping backdrop filled with kidnappings, dramatic rescue, swordplay, madness, and bitter rivalry, Alan W. Hirshfeld brings to life the heroes -- and heroines -- of this remarkable chapter in history. Characters include the destitute boy plucked from a collapsed building who grew up to become the world's greatest telescope maker; the hot-tempered Dane whose nose was lopped off in a duel over mathematics; a merchant's apprentice forced to choose between the lure of money and his passion for astronomy; and the musician who astounded the world by discovering a new planet from his own backyard.Generously illustrated with period engravings and paintings, Parallax is an unforgettable ride through time and space.

Why Does E=mc²? (And Why Should We Care?)


Brian Cox - 2009
    Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.

From Eternity to Here: The Quest for the Ultimate Theory of Time


Sean Carroll - 2009
    In the hands of one of today’s hottest young physicists, that simple fact of breakfast becomes a doorway to understanding the Big Bang, the universe, and other universes, too. In From Eternity to Here, Sean Carroll argues that the arrow of time, pointing resolutely from the past to the future, owes its existence to conditions before the Big Bang itself, a period modern cosmology of which Einstein never dreamed. Increasingly, though, physicists are going out into realms that make the theory of relativity seem like child’s play. Carroll’s scenario is not only elegant, it’s laid out in the same easy-to- understand language that has made his group blog, Cosmic Variance, the most popular physics blog on the Net. From Eternity to Here uses ideas at the cutting edge of theoretical physics to explore how properties of spacetime before the Big Bang can explain the flow of time we experience in our everyday lives. Carroll suggests that we live in a baby universe, part of a large family of universes in which many of our siblings experience an arrow of time running in the opposite direction. It’s an ambitious, fascinating picture of the universe on an ultra-large scale, one that will captivate fans of popular physics blockbusters like Elegant Universe and A Brief History of Time.

The Book of Nothing: Vacuums, Voids, and the Latest Ideas about the Origins of the Universe


John D. Barrow - 2000
    Augustine equate nothingness with the Devil? What tortuous means did 17th-century scientists employ in their attempts to create a vacuum? And why do contemporary quantum physicists believe that the void is actually seething with subatomic activity? You’ll find the answers in this dizzyingly erudite and elegantly explained book by the English cosmologist John D. Barrow.Ranging through mathematics, theology, philosophy, literature, particle physics, and cosmology, The Book of Nothing explores the enduring hold that vacuity has exercised on the human imagination. Combining high-wire speculation with a wealth of reference that takes in Freddy Mercury and Shakespeare alongside Isaac Newton, Albert Einstein, and Stephen Hawking, the result is a fascinating excursion to the vanishing point of our knowledge.

The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom


Graham Farmelo - 2009
    He was one of the leading pioneers of the greatest revolution in twentieth-century science: quantum mechanics. The youngest theoretician ever to win the Nobel Prize for Physics, he was also pathologically reticent, strangely literal-minded and legendarily unable to communicate or empathize. Through his greatest period of productivity, his postcards home contained only remarks about the weather.Based on a previously undiscovered archive of family papers, Graham Farmelo celebrates Dirac's massive scientific achievement while drawing a compassionate portrait of his life and work. Farmelo shows a man who, while hopelessly socially inept, could manage to love and sustain close friendship.The Strangest Man is an extraordinary and moving human story, as well as a study of one of the most exciting times in scientific history.'A wonderful book . . . Moving, sometimes comic, sometimes infinitely sad, and goes to the roots of what we mean by truth in science.' Lord Waldegrave, Daily Telegraph

The 4% Universe: Dark Matter, Dark Energy, and the Race to Discover the Rest of Reality


Richard Panek - 2010
      In the past few years, a handful of scientists have been in a race to explain a disturbing aspect of our universe: only 4 percent of it consists of the matter that makes up you, me, our books, and every planet, star, and galaxy. The rest—96 percent of the universe—is completely unknown.   Richard Panek tells the dramatic story of how scientists reached this conclusion, and what they’re doing to find this "dark" matter and an even more bizarre substance called dark energy. Based on in-depth, on-site reporting and hundreds of interviews—with everyone from Berkeley’s feisty Saul Perlmutter and Johns Hopkins’s meticulous Adam Riess to the quietly revolutionary Vera Rubin—the book offers an intimate portrait of the bitter rivalries and fruitful collaborations, the eureka moments and blind alleys, that have fueled their search, redefined science, and reinvented the universe.

Stephen Hawking's Universe: The Cosmos Explained


David Filkin - 1997
    Now, in everyday language, Stephen Hawking's Universe reveals step-by-step how we can all share his understanding of the cosmos, and our own place within it. Stargazing has never been the same since cosmologists discovered that galaxies are moving away from each other at an extraordinary speed. It was this understanding of the movement of galaxies that allowed scientists to develop a theory of how the universe was created—the Big Bang theory. Working with this theory, Stephen Hawking and other physicists felt challenged to come up with a scientific picture that would tackle the fundamental question: what is the nature of the universe? Stephen Hawking's Universe charts this work and provides simple explanations for phenomena that arouse our curiosity. This work is a voyage of discovery with an astonishing set of conclusions that will enable us to understand how matter can be produced from nothing at all and will provide us with an explanation for the basis of our existence and that of everything around us.

The Universe Within: Discovering the Common History of Rocks, Planets, and People


Neil Shubin - 2013
    Starting once again with fossils, he turns his gaze skyward, showing us how the entirety of the universe’s fourteen-billion-year history can be seen in our bodies. As he moves from our very molecular composition (a result of stellar events at the origin of our solar system) through the workings of our eyes, Shubin makes clear how the evolution of the cosmos has profoundly marked our own bodies. Fully illustrated with black and white drawings.