Beginning Programming with Python for Dummies


John Paul Mueller - 2014
    It requires three to five times less time than developing in Java, is a great building block for learning both procedural and object-oriented programming concepts, and is an ideal language for data analysis. Beginning Programming with Python For Dummies is the perfect guide to this dynamic and powerful programming language--even if you've never coded before! Author John Paul Mueller draws on his vast programming knowledge and experience to guide you step-by-step through the syntax and logic of programming with Python and provides several real-world programming examples to give you hands-on experience trying out what you've learned.Provides a solid understanding of basic computer programming concepts and helps familiarize you with syntax and logic Explains the fundamentals of procedural and object-oriented programming Shows how Python is being used for data analysis and other applications Includes short, practical programming samples to apply your skills to real-world programming scenarios Whether you've never written a line of code or are just trying to pick up Python, there's nothing to fear with the fun and friendly Beginning Programming with Python For Dummies leading the way.

Django for Beginners: Learn web development with Django 2.0


William S. Vincent - 2018
    Proceed step-by-step through five progressively more complex web applications: from a "Hello World" app all the way to a robust Newspaper app with a custom user model, complete user authentication flow, foreign key relationships, and more. Learn current best practices around class-based views, templates, urls, user authentication, testing, and deployment. The material is up-to-date with the latest versions of both Django (2.0) and Python (3.6). TABLE OF CONTENTS: * Introduction * Chapter 1: Initial Setup * Chapter 2: Hello World app * Chapter 3: Pages app * Chapter 4: Message Board app * Chapter 5: Blog app * Chapter 6: Forms * Chapter 7: User Accounts * Chapter 8: Custom User Model * Chapter 9: User Authentication * Chapter 10: Bootstrap * Chapter 11: Password Change and Reset * Chapter 12: Email * Chapter 13: Newspaper app * Chapter 14: Permissions and Authorizations * Chapter 15: Comments * Conclusion

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Hadoop: The Definitive Guide


Tom White - 2009
    Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Introductory Statistics with R


Peter Dalgaard - 2002
    It can be freely downloaded and it works on multiple computer platforms. This book provides an elementary introduction to R. In each chapter, brief introductory sections are followed by code examples and comments from the computational and statistical viewpoint. A supplementary R package containing the datasets can be downloaded from the web.

Big Data, Analytics, and the Future of Marketing & Sales


McKinsey Chief Marketing & Sales Officer Forum - 2013
    The data big bang has unleashed torrents of terabytes about everything from customer behaviors to weather patterns to demographic consumer shifts in emerging markets. This collection of articles, videos, interviews, and slideshares highlights the most important lessons for companies looking to turn data into above-market growth: Using analytics to identify valuable business opportunities from the data to drive decisions and improve marketing return on investment (MROI) Turning those insights into well-designed products and offers that delight customers Delivering those products and offers effectively to the marketplace. The goldmine of data represents a pivot-point moment for marketing and sales leaders. Companies that inject big data and analytics into their operations show productivity rates and profitability that are 5 percent to 6 percent higher than those of their peers. That’s an advantage no company can afford to ignore.

Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions


Michael G. Milton - 2009
    If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.

Disruptive Possibilities: How Big Data Changes Everything


Jeffrey Needham - 2013
    As author Jeffrey Needham points out in this eye-opening book, big data can provide unprecedented insight into user habits, giving enterprises a huge market advantage. It will also inspire organizations to change the way they function."Disruptive Possibilities: How Big Data Changes Everything" takes you on a journey of discovery into the emerging world of big data, from its relatively simple technology to the ways it differs from cloud computing. But the big story of big data is the disruption of enterprise status quo, especially vendor-driven technology silos and budget-driven departmental silos. In the highly collaborative environment needed to make big data work, silos simply don't fit.Internet-scale computing offers incredible opportunity and a tremendous challenge--and it will soon become standard operating procedure in the enterprise. This book shows you what to expect.

Agile Data Warehouse Design: Collaborative Dimensional Modeling, from Whiteboard to Star Schema


Lawrence Corr - 2011
    This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.

Storytelling with Data: A Data Visualization Guide for Business Professionals


Cole Nussbaumer Knaflic - 2015
    You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples--ready for immediate application to your next graph or presentation.Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data--Storytelling with Data will give you the skills and power to tell it!

Python Cookbook


David Beazley - 2002
    Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions

Mastering the Nikon D7100


Darrell Young - 2013
    Darrell is determined to help the user navigate past the confusion that often comes with complex and powerful professional camera equipment. This book explores the features and capabilities of the camera in a way that far surpasses the user's manual. It guides readers through the camera features with step-by-step setting adjustments; color illustrations; and detailed how, when, and why explanations for each option. Every button, dial, switch, and menu configuration setting is explored in a user-friendly manner, with suggestions for setup according to various shooting styles. Darrell's friendly and informative writing style allows readers to easily follow directions, while feeling as if a friend dropped in to share his knowledge. The learning experience for new D7100 users goes beyond just the camera itself and covers basic photography technique.

The Art of Data Science: A Guide for Anyone Who Works with Data


Roger D. Peng - 2015
    The authors have extensive experience both managing data analysts and conducting their own data analyses, and have carefully observed what produces coherent results and what fails to produce useful insights into data. This book is a distillation of their experience in a format that is applicable to both practitioners and managers in data science.

The Big Book of Dashboards: Visualizing Your Data Using Real-World Business Scenarios


Steve Wexler - 2017
    It's great to have theory and evidenced-based research at your disposal, but what will you do when somebody asks you to make your dashboard 'cooler' by adding packed bubbles and donut charts?The expert authors have a combined 30-plus years of hands-on experience helping people in hundreds of organizations build effective visualizations. They have fought many 'best practices' battles and having endured bring an uncommon empathy to help you, the reader of this book, survive and thrive in the data visualization world.A well-designed dashboard can point out risks, opportunities, and more; but common challenges and misconceptions can make your dashboard useless at best, and misleading at worst. The Big Book of Dashboards gives you the tools, guidance, and models you need to produce great dashboards that inform, enlighten, and engage.