Book picks similar to
SAS Certification Prep Guide: Advanced Programming for SAS 9 by SAS Institute
programming
sas
analytics
computer-technology
How Not to Be Wrong: The Power of Mathematical Thinking
Jordan Ellenberg - 2014
In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it.Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.
Build a Career in Data Science
Emily Robinson - 2020
Industry experts Jacqueline Nolis and Emily Robinson lay out the soft skills you’ll need alongside your technical know-how in order to succeed in the field. Following their clear and simple instructions you’ll craft a resume that hiring managers will love, learn how to ace your interview, and ensure you hit the ground running in your first months at your new job. Once you’ve gotten your foot in the door, learn to thrive as a data scientist by handling high expectations, dealing with stakeholders, and managing failures. Finally, you’ll look towards the future and learn about how to join the broader data science community, leaving a job gracefully, and plotting your career path. With this book by your side you’ll have everything you need to ensure a rewarding and productive role in data science.
Ethics And Technology: Ethical Issues In An Age Of Information And Communication Technology
Herman T. Tavani - 2003
. . . We need a good book in cyberethics to deal with the present and prepare us for an uncertain future. Tavani's Ethics and Technology is such a book." --from the foreword by James Moor, Dartmouth College Is there privacy in a world of camera phones and wireless networking? Does technology threaten your civil liberties? How will bioinformatics and nanotechnology affect us? Should you worry about equity and access in a globalized economy? From privacy and security to free speech and intellectual property to globalization and outsourcing, the issues and controversies of the information age are serious, complex, and pervasive. In this new edition of his groundbreaking book, Herman Tavani introduces computer professionals to the emerging field of Cyberethics, the interdisciplinary field of study that addresses these new ethical issues from all perspectives: technical, social, and philosophical. Using fascinating real-world examples--including the latest court decisions in such cases as Verizon v. RIAA, MGM v. Grokster, Google versus the Bush Administration, and the Children's Online Pornography Act (CIPA) --as well as hypothetical scenarios, he shows you how to understand and analyze the practical, moral, and legal issues that impact your work and your life. Tavani discusses such cutting-edge areas as: * Globalization and outsourcing * Property rights and open source software * HIPAA (privacy laws) and surveillance * The Patriot Act and civil liberties * Bioinformatics and genomics research * Converging technologies--pervasive computing and nanocomputing * Children's online pornography laws Updating and expanding upon the previous edition, Ethics and Technology, Second Edition provides a much-needed ethical compass to help computer and non-computer professionals alike navigate the challenging waters of cyberspace. About the Author Herman T. Tavani is Professor of Philosophy at Rivier College and Co-Director of the International Society for Ethics and Information Technology (INSEIT). He is the author, editor, or co-editor of five books on ethical aspects of information technology. www.wiley.com/college/tavani
Data Jujitsu: The Art of Turning Data into Product
D.J. Patil - 2012
Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu.Learn how to use a problem's "weight" against itself to:Break down seemingly complex data problems into simplified partsUse alternative data analysis techniques to examine themUse human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problemsLearn more about the problems before starting on the solutions—and use the findings to solve them, or determine whether the problems are worth solving at all.
Machine Learning Yearning
Andrew Ng
But building a machine learning system requires that you make practical decisions: Should you collect more training data? Should you use end-to-end deep learning? How do you deal with your training set not matching your test set? and many more. Historically, the only way to learn how to make these "strategy" decisions has been a multi-year apprenticeship in a graduate program or company. This is a book to help you quickly gain this skill, so that you can become better at building AI systems.
Machine Learning with R
Brett Lantz - 2014
This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.
We're Parents! The New Dad Book for Baby's First Year: Everything You Need to Know to Survive and Thrive Together
Adrian Kulp - 2019
Quick advice—Key childcare tips are broken into short, convenient guides—unlike other new dad books, there’s no reading an entire textbook just to change a diaper.
The big moments—Track your baby’s development at a glance with charts that lay out the most important milestones in one place.
Who needs other new dad books when you have the expert guidance of We’re Parents! at hand?
Algorithms Illuminated (Part 1): The Basics
Tim Roughgarden - 2017
Their applications range from network routing and computational genomics to public-key cryptography and database system implementation. Studying algorithms can make you a better programmer, a clearer thinker, and a master of technical interviews. Algorithms Illuminated is an accessible introduction to the subject---a transcript of what an expert algorithms tutor would say over a series of one-on-one lessons. The exposition is rigorous but emphasizes the big picture and conceptual understanding over low-level implementation and mathematical details. Part 1 of the book series covers asymptotic analysis and big-O notation, divide-and-conquer algorithms and the master method, randomized algorithms, and several famous algorithms for sorting and selection.
The Eudaemonic Pie
Thomas A. Bass - 1985
“The result is a veritable pi
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
Hadoop Explained
Aravind Shenoy - 2014
Hadoop allowed small and medium sized companies to store huge amounts of data on cheap commodity servers in racks. The introduction of Big Data has allowed businesses to make decisions based on quantifiable analysis. Hadoop is now implemented in major organizations such as Amazon, IBM, Cloudera, and Dell to name a few. This book introduces you to Hadoop and to concepts such as ‘MapReduce’, ‘Rack Awareness’, ‘Yarn’ and ‘HDFS Federation’, which will help you get acquainted with the technology.
Introduction to Machine Learning with Python: A Guide for Data Scientists
Andreas C. Müller - 2015
If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills
The Half-life of Facts: Why Everything We Know Has an Expiration Date
Samuel Arbesman - 2012
Smoking has gone from doctor recommended to deadly. We used to think the Earth was the center of the universe and that Pluto was a planet. For decades, we were convinced that the brontosaurus was a real dinosaur. In short, what we know about the world is constantly changing. But it turns out there’s an order to the state of knowledge, an explanation for how we know what we know. Samuel Arbesman is an expert in the field of scientometrics—literally the science of science. Knowledge in most fields evolves systematically and predictably, and this evolution unfolds in a fascinating way that can have a powerful impact on our lives. Doctors with a rough idea of when their knowledge is likely to expire can be better equipped to keep up with the latest research. Companies and governments that understand how long new discoveries take to develop can improve decisions about allocating resources. And by tracing how and when language changes, each of us can better bridge generational gaps in slang and dialect. Just as we know that a chunk of uranium can break down in a measurable amount of time—a radioactive half-life—so too any given field’s change in knowledge can be measured concretely. We can know when facts in aggregate are obsolete, the rate at which new facts are created, and even how facts spread. Arbesman takes us through a wide variety of fields, including those that change quickly, over the course of a few years, or over the span of centuries. He shows that much of what we know consists of “mesofacts”—facts that change at a middle timescale, often over a single human lifetime. Throughout, he offers intriguing examples about the face of knowledge: what English majors can learn from a statistical analysis of The Canterbury Tales, why it’s so hard to measure a mountain, and why so many parents still tell kids to eat their spinach because it’s rich in iron. The Half-life of Facts is a riveting journey into the counterintuitive fabric of knowledge. It can help us find new ways to measure the world while accepting the limits of how much we can know with certainty.
Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS
John K. Kruschke - 2010
Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884 0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke
On-Camera Flash Techniques for Digital Wedding and Portrait Photography
Neil van Niekerk - 2009
Techniques for using simple accessories such as bounce cards and diffusers, as well as how to improve a lighting scenario by enhancing it rather than overwhelming it, show photographers how to master this challenging aspect of portraiture.