This Explains Everything: Deep, Beautiful, and Elegant Theories of How the World Works


John BrockmanSean Carroll - 2013
    Why do we recognize patterns? Is there such a thing as positive stress? Are we genetically programmed to be in conflict with each other? Those are just some of the 150 questions that the world's best scientific minds answer with elegant simplicity.With contributions from Jared Diamond, Richard Dawkins, Nassim Taleb, Brian Eno, Steven Pinker, and more, everything is explained in fun, uncomplicated terms that make the most complex concepts easy to comprehend.

Stephen Hawking's Universe: The Cosmos Explained


David Filkin - 1997
    Now, in everyday language, Stephen Hawking's Universe reveals step-by-step how we can all share his understanding of the cosmos, and our own place within it. Stargazing has never been the same since cosmologists discovered that galaxies are moving away from each other at an extraordinary speed. It was this understanding of the movement of galaxies that allowed scientists to develop a theory of how the universe was created—the Big Bang theory. Working with this theory, Stephen Hawking and other physicists felt challenged to come up with a scientific picture that would tackle the fundamental question: what is the nature of the universe? Stephen Hawking's Universe charts this work and provides simple explanations for phenomena that arouse our curiosity. This work is a voyage of discovery with an astonishing set of conclusions that will enable us to understand how matter can be produced from nothing at all and will provide us with an explanation for the basis of our existence and that of everything around us.

e: the Story of a Number


Eli Maor - 1993
    Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.

Dancing Wu Li Masters: An Overview of the New Physics (Perennial Classics)


Gary Zukav - 1979
    Like a Wu Li Master who would teach us wonder for the falling petal before speaking of gravity, Zukav writes in beautifully clear language—with no mathematical equations—opening our minds to the exciting new theories that are beginning to embrace the ultimate nature of our universe...Quantum mechanics, relativity, and beyond to the Einstein-Podolsky-Rosen effect and Bell's theorem.At an Esalen Institute meeting in 1976, tai chi master Al Huang said that the Chinese word for physics is Wu Li, "patterns of organic energy." Journalist Gary Zukav and the others present developed the idea of physics as the dance of the Wu Li Masters--the teachers of physical essence. Zukav explains the concept further: The Wu Li Master dances with his student. The Wu Li Master does not teach, but the student learns. The Wu Li Master always begins at the center, the heart of the matter.... This book deals not with knowledge, which is always past tense anyway, but with imagination, which is physics come alive, which is Wu Li.... Most people believe that physicists are explaining the world. Some physicists even believe that, but the Wu Li Masters know that they are only dancing with it. The "new physics" of Zukav's 1979 book comprises quantum theory, particle physics, and relativity. Even as these theories age they haven't percolated all that far into the collective consciousness; they're too far removed from mundane human experience not to need introduction. The Dancing Wu Li Masters remains an engaging, accessible way to meet the most profound and mind-altering insights of 20th-century science. --Mary Ellen Curtin

Improbable Destinies: Fate, Chance, and the Future of Evolution


Jonathan B. Losos - 2017
    But evolutionary biologists also point out many examples of contingency, cases where the tiniest change--a random mutation or an ancient butterfly sneeze--caused evolution to take a completely different course. What role does each force really play in the constantly changing natural world? Are the plants and animals that exist today, and we humans ourselves, inevitabilities or evolutionary freaks? And what does that say about life on other planets?Jonathan Losos reveals what the latest breakthroughs in evolutionary biology can tell us about one of the greatest ongoing debates in science. He takes us around the globe to meet the researchers who are solving the deepest mysteries of life on Earth through their work in experimental evolutionary science. Losos himself is one of the leaders in this exciting new field, and he illustrates how experiments with guppies, fruit flies, bacteria, foxes, and field mice, along with his own work with anole lizards on Caribbean islands, are rewinding the tape of life to reveal just how rapid and predictable evolution can be.Improbable Destinies will change the way we think and talk about evolution. Losos's insights into natural selection and evolutionary change have far-reaching applications for protecting ecosystems, securing our food supply, and fighting off harmful viruses and bacteria. This compelling narrative offers a new understanding of ourselves and our role in the natural world and the cosmos.

The Beginning and the End of Everything: From the Big Bang to the End of the Universe


Paul Parsons - 2018
    Authoritative and engaging, Paul Parsons takes us on a rollercoaster ride through billions of light years to tell the story of the Big Bang, from birth to death.13.8 billion years ago, something incredible happened. Matter, energy, space and time all suddenly burst into existence in a cataclysmic event that’s come to be known as the Big Bang. It was the birth of our universe. What started life smaller than the tiniest subatomic particle is now unimaginably vast and plays home to trillions of galaxies. The formulation of the Big Bang theory is a story that combines some of the most far-reaching concepts in fundamental physics with equally profound observations of the cosmos.From our realization that we are on a planet orbiting a star in one of many galaxies, to the discovery that our universe is expanding, to the groundbreaking theories of Einstein that laid the groundwork for the Big Bang cosmology of today – as each new discovery deepens our understanding of the origins of our universe, a clearer picture is forming of how it will all end. Will we ultimately burn out or fade away? Could the end simply signal a new beginning, as the universe rebounds into a fresh expanding phase? And was our Big Bang just one of many, making our cosmos only a small part of a sprawling multiverse of parallel universes?

Rise of the Rocket Girls: The Women Who Propelled Us, from Missiles to the Moon to Mars


Nathalia Holt - 2016
    Rather, they recruited an elite group of young women who, with only pencil, paper, and mathematical prowess, transformed rocket design, helped bring about the first American satellites, and made the exploration of the solar system possible. For the first time, Rise of the Rocket Girls tells the stories of these women--known as "human computers"--who broke the boundaries of both gender and science. Based on extensive research and interviews with all the living members of the team, Rise of the Rocket Girls offers a unique perspective on the role of women in science: both where we've been, and the far reaches of space to which we're heading.

The Void


Frank Close - 2007
    Readers will find an enlightening history of the vacuum: how the efforts to make a better vacuum led to the discovery of the electron; the understanding that the vacuum is filled with fields; the ideas of Newton, Mach, and Einstein on the nature of space and time; the mysterious aether and how Einstein did away with it; and the latest ideas that the vacuum is filled with the Higgs field. The story ranges from the absolute zero of temperature and the seething vacuum of virtual particles and anti-particles that fills space, to the extreme heat and energy of the early universe. It compares the ways that substances change from gas to liquid and solid with the way that the vacuum of our universe has changed as the temperature dropped following the Big Bang. It covers modern ideas that there may be more dimensions to the void than those that we currently are aware of and even that our universe is but one in a multiverse. The Void takes us inside a field of science that may ultimately provide answers to some of cosmology's most fundamental questions: what lies outside the universe, and, if there was once nothing, then how did the universe begin?

And Then You're Dead: What Really Happens If You Get Swallowed by a Whale, Are Shot from a Cannon, or Go Barreling Over Niagara


Cody Cassidy - 2017
     Is slipping on a banana peel really as hazardous to your health as the cartoons imply? Answer: Yes. Banana peels ooze a gel that turns out to be extremely slippery. Your foot and body weight provide the pressure. The gel provides the humor (and resulting head trauma). Can you die by shaking someone s hand? Answer: Yes. That's because, due to atomic repulsion, you've never actually touched another person s hand. If you could, the results would be as disastrous as a medium-sized hydrogen bomb. If you were Cookie Monster, just how many cookies could you actually eat in one sitting? Answer: Most stomachs can hold up to sixty cookies, or around four liters. If you eat or drink more than that, you re approaching the point at which the cookies would break through the lesser curvature of your stomach, and then you d better call an ambulance to Sesame Street."

Einstein's Dice and Schrödinger's Cat: How Two Great Minds Battled Quantum Randomness to Create a Unified Theory of Physics


Paul Halpern - 2015
    Einstein famously quipped that God does not play dice with the universe, and Schrödinger is equally well known for his thought experiment about the cat in the box who ends up “spread out” in a probabilistic state, neither wholly alive nor wholly dead. Both of these famous images arose from these two men’s dissatisfaction with quantum weirdness and with their assertion that underneath it all, there must be some essentially deterministic world. Even though it was Einstein’s own theories that made quantum mechanics possible, both he and Schrödinger could not bear the idea that the universe was, at its most fundamental level, random.As the Second World War raged, both men struggled to produce a theory that would describe in full the universe’s ultimate design, first as collaborators, then as competitors. They both ultimately failed in their search for a Grand Unified Theory—not only because quantum mechanics is true, but because Einstein and Schrödinger were also missing a key component: of the four forces we recognize today (gravity, electromagnetism, the weak force, and the strong force), only gravity and electromagnetism were known at the time.Despite their failures, though, much of modern physics remains focused on the search for a Grand Unified Theory. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model—the closest thing we have to a unified theory—nearly complete. And while Einstein and Schrödinger tried and failed to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when he was wrong, Einstein couldn’t help but be right.

Pandora's Lab: Seven Stories of Science Gone Wrong


Paul A. Offit - 2017
    These are today's sins of science—as deplorable as mistaken past ideas about advocating racial purity or using lobotomies as a cure for mental illness. These unwitting errors add up to seven lessons both cautionary and profound, narrated by renowned author and speaker Paul A. Offit. Offit uses these lessons to investigate how we can separate good science from bad, using some of today's most controversial creations—e-cigarettes, GMOs, drug treatments for ADHD—as case studies. For every "Aha!" moment that should have been an "Oh no," this book is an engrossing account of how science has been misused disastrously—and how we can learn to use its power for good.

The Edge of Physics: A Journey to Earth's Extremes to Unlock the Secrets of the Universe


Anil Ananthaswamy - 2010
    Why is the universe expanding at an ever faster rate? What is the nature of the "dark matter" that makes up almost a quarter of the universe? Why does the universe appear fine-tuned for life? Are there others besides our own? Ananthaswamy soon finds himself at the ends of the earth--in remote and sometimes dangerous places. Take the Atacama Desert in the Chilean Andes, one of the coldest, driest places on the planet, where not even a blade of grass can survive. Its spectacularly clear skies and dry atmosphere allow astronomers to gather brilliant images of galaxies billions of light-years away. Ananthaswamy takes us inside the European Southern Observatory's Very Large Telescope on Mount Paranal, where four massive domes open to the sky each night "like dragons waking up."He also takes us deep inside an abandoned iron mine in Minnesota, where half-mile-thick rock shields physicists as they hunt for elusive dark matter particles. And to the East Antarctic Ice Sheet, where engineers are drilling 1.5 miles into the clearest ice on the planet. They're building the world's largest neutrino detector, which could finally help reconcile quantum physics with Einstein's theory of general relativity.The stories of the people who work at these and other dramatic research sites--from Lake Baikal in Siberia to the Indian Astronomical Observatory in the Himalayas to the subterranean lair of the Large Hadron Collider--make for a compelling new portrait of the universe and our quest to understand it. An atmospheric, engaging, and illuminating read, "The Edge of Physics" depicts science as a human process, bringing cosmology back down to earth in the most vivid terms.

Mathematics for the Nonmathematician


Morris Kline - 1967
    But there is one other motive which is as strong as any of these — the search for beauty. Mathematics is an art, and as such affords the pleasures which all the arts afford." In this erudite, entertaining college-level text, Morris Kline, Professor Emeritus of Mathematics at New York University, provides the liberal arts student with a detailed treatment of mathematics in a cultural and historical context. The book can also act as a self-study vehicle for advanced high school students and laymen. Professor Kline begins with an overview, tracing the development of mathematics to the ancient Greeks, and following its evolution through the Middle Ages and the Renaissance to the present day. Subsequent chapters focus on specific subject areas, such as "Logic and Mathematics," "Number: The Fundamental Concept," "Parametric Equations and Curvilinear Motion," "The Differential Calculus," and "The Theory of Probability." Each of these sections offers a step-by-step explanation of concepts and then tests the student's understanding with exercises and problems. At the same time, these concepts are linked to pure and applied science, engineering, philosophy, the social sciences or even the arts.In one section, Professor Kline discusses non-Euclidean geometry, ranking it with evolution as one of the "two concepts which have most profoundly revolutionized our intellectual development since the nineteenth century." His lucid treatment of this difficult subject starts in the 1800s with the pioneering work of Gauss, Lobachevsky, Bolyai and Riemann, and moves forward to the theory of relativity, explaining the mathematical, scientific and philosophical aspects of this pivotal breakthrough. Mathematics for the Nonmathematician exemplifies Morris Kline's rare ability to simplify complex subjects for the nonspecialist.