From a Logical Point of View: Nine Logico-Philosophical Essays


Willard Van Orman Quine - 1953
    At the same time adjacent portions of philosophy and logic are discussed. To the existence of what objects may a given scientific theory be said to be committed? And what considerations may suitably guide us in accepting or revising such ontological commitments? These are among the questions dealt with in this book, particular attention being devoted to the role of abstract entities in mathematics. There is speculation on the mechanism whereby objects of one sort or another come to be posited a process in which the notion of identity plays an important part."This volume of essays has a unity and bears throughout the imprint of Quine's powerful and original mind. It is written with the felicity in the choice of words which makes everything that Quine writes a pleasure to read, and which ranks him among the best contemporary writers on abstract subjects." (Cambridge Review)"Professor Quine's challenging and original views are here for the first time presented as a unity. The chief merit of the book is the heart-searching from which it arose and to which it will give rise. In vigour, conciseness, and clarity, it is characteristic of its author." (Oxford Magazine)

The Equation That Couldn't Be Solved: How Mathematical Genius Discovered the Language of Symmetry


Mario Livio - 2005
    Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.

Science and Hypothesis


Henri Poincaré - 1902
    Explaining how such basic concepts as number and magnitude, space and force were developed, the great French mathematician refutes the skeptical position that modern scientific method and its results are wholly factitious. The places of rigorous logic and intuitive leaps are both established by an analysis of contrasting methods of idea-creation in individuals and in modern scientific traditions. The nature of hypothesis and the role of probability are investigated with all of Poincaré's usual fertility of insight.Partial contents: On the nature of mathematical reasoning. Magnitude and experiment. Space: non-Euclidean geometrics, space and geometry, experiment and geometry. Force: classical mechanics, relative and absolute motion, energy and thermodynamics. Nature: hypotheses in physics, the theories of modern physics, the calculus of probabilities, optics and electricity, electro-dynamics."Poincaré's was the last man to take practically all mathematics, both pure and applied as his province. Few mathematicians have had the breadth of philosophic vision that Poincaré's had, and none is his superior in the gift of clear exposition." — Men of Mathematics, Eric Temple Bell, Professor of Mathematics, University of Cambridge

The Scientific Image


Bas C. Van Fraassen - 1980
    In this book van Fraassen develops an alternative to scientific realism by constructing and evaluating three mutually reinforcing theories.

Incompleteness: The Proof and Paradox of Kurt Gödel


Rebecca Goldstein - 2005
    "A gem…An unforgettable account of one of the great moments in the history of human thought." —Steven PinkerProbing the life and work of Kurt Gödel, Incompleteness indelibly portrays the tortured genius whose vision rocked the stability of mathematical reasoning—and brought him to the edge of madness.

Gödel's Theorem: An Incomplete Guide to Its Use and Abuse


Torkel Franzén - 2005
    With exceptional clarity, Franz n gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of "Logical Dilemmas: The Life and Work of Kurt G del

Nature's Numbers: The Unreal Reality Of Mathematics


Ian Stewart - 1995
    Falling bodies fall with predictable accelerations. Eclipses can be accurately forecast centuries in advance. Nuclear power plants generate electricity according to well-known formulas. But those examples are the tip of the iceberg. In Nature's Numbers, Ian Stewart presents many more, each charming in its own way.. Stewart admirably captures compelling and accessible mathematical ideas along with the pleasure of thinking of them. He writes with clarity and precision. Those who enjoy this sort of thing will love this book."—Los Angeles Times

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

Impossibility: The Limits of Science and the Science of Limits


John D. Barrow - 1998
    Astronomer John Barrow takes an intriguing look at the limits of science, who argues that there are things that are ultimately unknowable, undoable, or unreachable.

Mathematical Thought from Ancient to Modern Times, Volume 1


Morris Kline - 1972
    Volume 1 looks at the discipline's origins in Babylon and Egypt, the creation of geometry and trigonometry by the Greeks, and the role of mathematics in the medieval and early modern periods. Volume 2 focuses on calculus, the rise of analysis in the 19th century, and the number theories of Dedekind and Dirichlet. The concluding volume covers the revival of projective geometry, the emergence of abstract algebra, the beginnings of topology, and the influence of Godel on recent mathematical study.

Introduction to Logic: and to the Methodology of Deductive Sciences


Alfred Tarski - 1993
    According to the author, these trends sought to create a unified conceptual apparatus as a common basis for the whole of human knowledge.Because these new developments in logical thought tended to perfect and sharpen the deductive method, an indispensable tool in many fields for deriving conclusions from accepted assumptions, the author decided to widen the scope of the work. In subsequent editions he revised the book to make it also a text on which to base an elementary college course in logic and the methodology of deductive sciences. It is this revised edition that is reprinted here.Part One deals with elements of logic and the deductive method, including the use of variables, sentential calculus, theory of identity, theory of classes, theory of relations and the deductive method. The Second Part covers applications of logic and methodology in constructing mathematical theories, including laws of order for numbers, laws of addition and subtraction, methodological considerations on the constructed theory, foundations of arithmetic of real numbers, and more. The author has provided numerous exercises to help students assimilate the material, which not only provides a stimulating and thought-provoking introduction to the fundamentals of logical thought, but is the perfect adjunct to courses in logic and the foundation of mathematics.

Arithmetic


Paul Lockhart - 2017
    But from the perspective of mathematics, groupings of ten are arbitrary, and can have serious shortcomings. Twelve would be better for divisibility, and eight is smaller and well suited to repeated halving. Grouping by two, as in binary code, has turned out to have its own remarkable advantages.Paul Lockhart reveals arithmetic not as the rote manipulation of numbers--a practical if mundane branch of knowledge best suited for balancing a checkbook or filling out tax forms--but as a set of ideas that exhibit the fascinating and sometimes surprising behaviors usually reserved for higher branches of mathematics. The essence of arithmetic is the skillful arrangement of numerical information for ease of communication and comparison, an elegant intellectual craft that arises from our desire to count, add to, take away from, divide up, and multiply quantities of important things. Over centuries, humans devised a variety of strategies for representing and using numerical information, from beads and tally marks to adding machines and computers. Lockhart explores the philosophical and aesthetic nature of counting and of different number systems, both Western and non-Western, weighing the pluses and minuses of each.A passionate, entertaining survey of foundational ideas and methods, Arithmetic invites readers to experience the profound and simple beauty of its subject through the eyes of a modern research mathematician.

Every Thing Must Go: Metaphysics Naturalized


James Ladyman - 2007
    In addition to showing how recent metaphysics has drifted away from connection with all other serious scholarly inquiry as a result of not heeding this restriction, they demonstrate how to build a metaphysics compatible with current fundamental phsyics ("ontic structural realism"), which, when combined with their metaphysics of the special sciences ("rainforest realism"), can be used to unify physics with the other sciences without reducing these sciences to physics intself. Taking science metaphysically seriously, Ladyman and Ross argue, means that metaphysicians must abandon the picture of the world as composed of self-subsistent individual objects, and the paradigm of causation as the collision of such objects. Every Thing Must Go also assesses the role of information theory and complex systems theory in attempts to explain the relationship between the special sciences and physics, treading a middle road between the grand synthesis of thermodynamics and information, and eliminativism about information. The consequences of the author's metaphysical theory for central issues in the philosophy of science are explored, including the implications for the realism vs. empiricism debate, the role of causation in scientific explanations, the nature of causation and laws, the status of abstract and virtual objects, and the objective reality of natural kinds

Against Method


Paul Karl Feyerabend - 1975
    He argues that the only feasible explanations of scientific successes are historical explanations, and that anarchism must now replace rationalism in the theory of knowledge.

The Undivided Universe: An Ontological Interpretation of Quantum Theory


David Bohm - 1993
    They develop an interpretation of quantum mechanics which gives a clear, intuitive understanding of its meaning and in which there is a coherent notion of the reality of the universe without assuming a fundamental role for the human observer. With the aid of new concepts such as active information together with non-locality, they provide a comprehensive account of all the basic features of quantum mechanics, including the relativistic domain and quantum field theory. It is shown that, with the new approach, paradoxical or unsatisfactory features associated with the standard approaches, such as the wave-particle duality and the collapse of the wave function, do not arise. Finally, the authors make new suggestions and indicate some areas in which one may expect quantum theory to break down in a way that will allow for a test. The Undivided Universe is an important book especially because it provides a different overall world view which is neither mechanistic nor reductionist. This view will ultimately have radical implications not only in physics but also in our general approach to all areas of life.