New Theories of Everything


John D. Barrow - 2007
    The author presents and explains the latest theories, predictions and controversies surrounding the ultimate explanation, from superstrings and multiverses to speculations about the world as a computer, and the implications of these theories for own existence.

The Quotable Einstein


Alice Calaprice - 1996
    I am only passionately curious.I have reached an age when, if someone tells me to wear socks, I don't have to.--Albert EinsteinAlbert Einstein was a prolific--and often thoughtful and gifted--writer, and he is immensely quotable. This collection of approximately 550 quotations by and about Einstein for the first time arranges his thoughts and ideas thematically. Here we can easily find Einstein's thoughts on everything from America and Americans, Germans and Germany, Jews and Zionism, war and peace, politics, religion and science, to more personal subjects, such as abortion, youth and aging, love and marriage, music, and pets. There is something to please everyone--and something to offend everyone. Also included are sections on what Einstein has said about other famous people, what others have said about him, a chronology including biographical data, an updated family tree that includes great-great-grandchildren, answers to the most common questions about Einstein, and a selected bibliography. The book includes an engaging foreword by Princeton physicist Freeman Dyson.To help the reader or researcher, two indexes are provided. The Index of Key Words will help readers find familiar quotations, and the Subject Index will lead them to subjects of particular interest. The book provides documentation, generally of primary sources such as the Einstein Archive and The Collected Papers of Albert Einstein.This book introduces readers to Einstein's many sides: by turns irascible and benign, warmly humorous and coldly dismissive, one who was at first bemused by the fame the world bestowed on him but who came to abhor the glare of publicity. We also see Einstein's development from the earliest quotations of a seventeen-year-old boy to his final words at age seventy-six.-- "The Bloomsbury Review"

Beyond Weird


Philip Ball - 2018
    But when Feynman said he didn’t understand quantum mechanics, he didn’t mean that he couldn’t do it – he meant that’s all he could do. He didn’t understand what the maths was saying: what quantum mechanics tells us about reality.Over the past decade or so, the enigma of quantum mechanics has come into sharper focus. We now realise that quantum mechanics is less about particles and waves, uncertainty and fuzziness, than a theory about information: about what can be known and how.This is more disturbing than our bad habit of describing the quantum world as ‘things behaving weirdly’ suggests. It calls into question the meanings and limits of space and time, cause and effect, and knowledge itself.The quantum world isn’t a different world: it is our world, and if anything deserves to be called ‘weird’, it’s us. This exhilarating book is about what quantum maths really means – and what it doesn’t mean.

Albert Einstein: And the Frontiers of Physics


Jeremy Bernstein - 1995
    They found him a dreamy child without an especially promising future. But some time in his early years he developed what he called wonder about the world. Later in life, he remembered two instances from his childhood--his fascination at age five with a compass and his introduction to the lucidity and certainty of geometry--that may have been the first signs of what was to come. From these ordinary beginnings, Einstein became one of the greatest scientific thinkers of all time. This illuminating biography describes in understandable language the experiments and revolutionary theories that flowed from Einstein's imagination and intellect--from his theory of relativity, which changed our conception of the universe and our place in it, to his search for a unified field theory that would explain all of the forces in the universe.

Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos


Seth Lloyd - 2006
    This wonderfully accessible book illuminates the professional and personal paths that led him to this remarkable conclusion.All interactions between particles in the universe, Lloyd explains, convey not only energy but also information—in other words, particles not only collide, they compute. And what is the entire universe computing, ultimately? “Its own dynamical evolution,” he says. “As the computation proceeds, reality unfolds.”To elucidate his theory, Lloyd examines the history of the cosmos, posing questions that in other hands might seem unfathomably complex: How much information is there in the universe? What information existed at the moment of the Big Bang and what happened to it? How do quantum mechanics and chaos theory interact to create our world? Could we attempt to re-create it on a giant quantum computer? Programming the Universe presents an original and compelling vision of reality, revealing our world in an entirely new light.

Mathematics: A Very Short Introduction


Timothy Gowers - 2002
    The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understandingof paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questionsabout the mathematical community (such as Is it true that mathematicians burn out at the age of 25?) It is the ideal introduction for anyone who wishes to deepen their understanding of mathematics.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundredsof key topics, from philosophy to Freud, quantum theory to Islam.

Quantum Theory


David Bohm - 1951
    Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail. Addressed primarily to advanced undergraduate students, the text begins with a study of the physical formulation of the quantum theory, from its origin and early development through an analysis of wave vs. particle properties of matter. In Part II, Professor Bohm addresses the mathematical formulation of the quantum theory, examining wave functions, operators, Schrödinger's equation, fluctuations, correlations, and eigenfunctions.Part III takes up applications to simple systems and further extensions of quantum theory formulation, including matrix formulation and spin and angular momentum. Parts IV and V explore the methods of approximate solution of Schrödinger's equation and the theory of scattering. In Part VI, the process of measurement is examined along with the relationship between quantum and classical concepts.Throughout the text, Professor Bohm places strong emphasis on showing how the quantum theory can be developed in a natural way, starting from the previously existing classical theory and going step by step through the experimental facts and theoretical lines of reasoning which led to replacement of the classical theory by the quantum theory.

The Case Against Reality: Why Evolution Hid the Truth from Our Eyes


Donald D. Hoffman - 2019
    How can it be possible that the world we see is not objective reality? And how can our senses be useful if they are not communicating the truth? Hoffman grapples with these questions and more over the course of this eye-opening work.Ever since Homo sapiens has walked the earth, natural selection has favored perception that hides the truth and guides us toward useful action, shaping our senses to keep us alive and reproducing. We observe a speeding car and do not walk in front of it; we see mold growing on bread and do not eat it. These impressions, though, are not objective reality. Just like a file icon on a desktop screen is a useful symbol rather than a genuine representation of what a computer file looks like, the objects we see every day are merely icons, allowing us to navigate the world safely and with ease.The real-world implications for this discovery are huge. From examining why fashion designers create clothes that give the illusion of a more “attractive” body shape to studying how companies use color to elicit specific emotions in consumers, and even dismantling the very notion that spacetime is objective reality, The Case Against Reality dares us to question everything we thought we knew about the world we see.

The Best American Science and Nature Writing 2013


Siddhartha Mukherjee - 2013
    Pulitzer Prize–winning author Siddhartha Mukherjee, a leading cancer physician and researcher, selects the year’s top science and nature writing from journalists who dive into their fields with curiosity and passion, delivering must-read articles from a wide array of fields.

Entanglement


Amir D. Aczel - 2002
    No one could. Until now.Entanglement tells the astounding story of the scientists who set out to complete Einstein's work. With accesible language and a highly entertaining tone, Amir Aczel shows us a world where the improbable--from unbreakable codes to teleportation--becomes possible.

Understanding Thermodynamics


Hendrick C. Van Ness - 1983
    Language is informal, examples are vivid and lively, and the perspectivie is fresh. Based on lectures delivered to engineering students, this work will also be valued by scientists, engineers, technicians, businessmen, anyone facing energy challenges of the future.

Subtle Is the Lord: The Science and the Life of Albert Einstein


Abraham Pais - 1982
    In this new major work Abraham Pais, himself an eminent physicist who worked alongside Einstein in the post-war years, traces the development of Einstein's entire oeuvre. This is the first book which deal comprehensively and in depth with Einstein's science, both the successes and the failures.Running through the book is a completely non-scientific biography (identified in the table of contents by italic type) including many letters which appear in English for the first time, as well as other information not published before.Throughout the preparation of this book, Pais has had complete access to the Einstein Archives (now in the possession of the Hebrew University) and the invaluable guidance of the late Helen Dukas--formerly Einstein's private secretary.

Common Sense of Science


Jacob Bronowski - 1951
    Bronowski was both a distinguished mathematician and a poet, a philosopher of science and a literary critic who wrote a well-known study of William Blake. Dr. Bronowski's very career was founded on the premise of an intimate connection between science and the humanities, disciplines which are still generally thought to be worlds apart.The Common Sense of Science, a book which remains as topical today as it was when it first appeared twenty-five years ago, articulates and develops Bronowski's provocative idea that the sciences and the arts fundamentally share the same imaginative vision.

Einstein's Dice and Schrödinger's Cat: How Two Great Minds Battled Quantum Randomness to Create a Unified Theory of Physics


Paul Halpern - 2015
    Einstein famously quipped that God does not play dice with the universe, and Schrödinger is equally well known for his thought experiment about the cat in the box who ends up “spread out” in a probabilistic state, neither wholly alive nor wholly dead. Both of these famous images arose from these two men’s dissatisfaction with quantum weirdness and with their assertion that underneath it all, there must be some essentially deterministic world. Even though it was Einstein’s own theories that made quantum mechanics possible, both he and Schrödinger could not bear the idea that the universe was, at its most fundamental level, random.As the Second World War raged, both men struggled to produce a theory that would describe in full the universe’s ultimate design, first as collaborators, then as competitors. They both ultimately failed in their search for a Grand Unified Theory—not only because quantum mechanics is true, but because Einstein and Schrödinger were also missing a key component: of the four forces we recognize today (gravity, electromagnetism, the weak force, and the strong force), only gravity and electromagnetism were known at the time.Despite their failures, though, much of modern physics remains focused on the search for a Grand Unified Theory. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model—the closest thing we have to a unified theory—nearly complete. And while Einstein and Schrödinger tried and failed to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when he was wrong, Einstein couldn’t help but be right.

Advice for a Young Investigator


Santiago Ramón y Cajal - 1897
    Hailed as the father of modern anatomy and neurobiology, he was largely responsible for the modern conception of the brain. His groundbreaking works were New Ideas on the Structure of the Nervous System and Histology of the Nervous System in Man and Vertebrates. In addition to leaving a legacy of unparalleled scientific research, Cajal sought to educate the novice scientist about how science was done and how he thought it should be done. This recently rediscovered classic, first published in 1897, is an anecdotal guide for the perplexed new investigator as well as a refreshing resource for the old pro.Cajal was a pragmatist, aware of the pitfalls of being too idealistic--and he had a sense of humor, particularly evident in his diagnoses of various stereotypes of eccentric scientists. The book covers everything from valuable personality traits for an investigator to social factors conducive to scientific work.