Foundations of Statistical Natural Language Processing


Christopher D. Manning - 1999
    This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Introduction to Automata Theory, Languages, and Computation


John E. Hopcroft - 1979
    With this long-awaited revision, the authors continue to present the theory in a concise and straightforward manner, now with an eye out for the practical applications. They have revised this book to make it more accessible to today's students, including the addition of more material on writing proofs, more figures and pictures to convey ideas, side-boxes to highlight other interesting material, and a less formal writing style. Exercises at the end of each chapter, including some new, easier exercises, help readers confirm and enhance their understanding of the material. *NEW! Completely rewritten to be less formal, providing more accessibility to todays students. *NEW! Increased usage of figures and pictures to help convey ideas. *NEW! More detail and intuition provided for definitions and proofs. *NEW! Provides special side-boxes to present supplemental material that may be of interest to readers. *NEW! Includes more exercises, including many at a lower level. *NEW! Presents program-like notation for PDAs and Turing machines. *NEW! Increas

Effective Objective-C 2.0: 52 Specific Ways to Improve Your IOS and OS X Programs


Matt Galloway - 2013
    Using the concise, scenario-driven style pioneered in Scott Meyers' best-selling Effective C++, Matt Galloway brings together 52 Objective-C best practices, tips, shortcuts, and realistic code examples that are available nowhere else. Through real-world examples, Galloway uncovers little-known Objective-C quirks, pitfalls, and intricacies that powerfully impact code behavior and performance. You'll learn how to choose the most efficient and effective way to accomplish key tasks when multiple options exist, and how to write code that's easier to understand, maintain, and improve. Galloway goes far beyond the core language, helping you integrate and leverage key Foundation framework classes and modern system libraries, such as Grand Central Dispatch. Coverage includes Optimizing interactions and relationships between Objective-C objects Mastering interface and API design: writing classes that feel "right at home" Using protocols and categories to write maintainable, bug-resistant code Avoiding memory leaks that can still occur even with Automatic Reference Counting (ARC) Writing modular, powerful code with Blocks and Grand Central Dispatch Leveraging differences between Objective-C protocols and multiple inheritance in other languages Improving code by more effectively using arrays, dictionaries, and sets Uncovering surprising power in the Cocoa and Cocoa Touch frameworks

The Software Paradox


Stephen O’Grady - 2015
    

Applied Predictive Modeling


Max Kuhn - 2013
    Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Building Java Programs: A Back to Basics Approach


Stuart Reges - 2007
    By using objects early to solve interesting problems and defining objects later in the course, Building Java Programs develops programming knowledge for a broad audience. Introduction to Java Programming, Primitive Data and Definite Loops, Introduction to Parameters and Objects, Conditional Execution, Program Logic and Indefinite Loops, File Processing, Arrays, Defining Classes, Inheritance and Interfaces, ArrayLists, Java Collections Framework, Recursion, Searching and Sorting, Graphical User Interfaces. For all readers interested in introductory programming.

Pro ASP.NET MVC 4


Adam Freeman - 2012
    It provides a high-productivity programming model that promotes cleaner code architecture, test-driven development, and powerful extensibility, combined with all the benefits of ASP.NET.ASP.NET MVC 4 contains a number of significant advances over previous versions. New mobile and desktop templates (employing adaptive rendering) are included together with support for jQuery Mobile for the first time. New display modes allow your application to select views based on the browser that's making the request while Code Generation Recipes for Visual Studio help you auto-generate project-specific code for a wide variety of situtations including NuGet support.In this fourth edition, the core model-view-controller (MVC) architectural concepts are not simply explained or discussed in isolation, but are demonstrated in action. You'll work through an extended tutorial to create a working e-commerce web application that combines ASP.NET MVC with the latest C# language features and unit-testing best practices. By gaining this invaluable, practical experience, you'll discover MVC's strengths and weaknesses for yourself--and put your best-learned theory into practice.The book's authors, Steve Sanderson and Adam Freeman, have both watched the growth of ASP.NET MVC since its first release. Steve is a well-known blogger on the MVC Framework and a member of the Microsoft Web Platform and Tools team. Adam started designing and building web applications 15 years ago and has been responsible for some of the world's largest and most ambitious projects. You can be sure you are in safe hands.

Ctrl+Shift+Enter Mastering Excel Array Formulas: Do the Impossible with Excel Formulas Thanks to Array Formula Magic


Mike Girvin - 2013
    Beginning with an introduction to array formulas, this manual examines topics such as how they differ from ordinary formulas, the benefits and drawbacks of their use, functions that can and cannot handle array calculations, and array constants and functions. Among the practical applications surveyed include how to extract data from tables and unique lists, how to get results that match any criteria, and how to utilize various methods for unique counts. This book contains 529 screen shots.

Beginning PHP and MySQL 5: From Novice to Professional


W. Jason Gilmore - 2004
    Essentially three books in one: provides thorough introductions to the PHP language and the MySQL database, and shows you how these two technologies can be effectively integrated to build powerful websites. Provides over 500 code examples, including real-world tasks such as creating an auto-login feature, sending HTML-formatted e-mail, testing password guessability, and uploading files via a web interface. Updated for MySQL 5, includes new chapters introducing triggers, stored procedures, and views.

Programming Entity Framework: DbContext


Julia Lerman - 2011
    This concise book shows you how to use the API to perform set operations with the DbSet class, handle change tracking and resolve concurrency conflicts with the Change Tracker API, and validate changes to your data with the Validation API.With DbContext, you’ll be able to query and update data, whether you’re working with individual objects or graphs of objects and their related data. You’ll find numerous C# code samples to help you get started. All you need is experience with Visual Studio and database management basics.Use EF’s query capabilities to retrieve data, and use LINQ to sort and filter dataLearn how to add new data, and change and delete existing dataUse the Change Tracker API to access information EF keeps about the state of entity instancesControl change tracking information of entities in disconnected scenarios, including NTier applicationsValidate data changes before they’re sent to the database, and set up validation rulesBypass EF’s query pipeline and interact directly with the database

Category Theory for Programmers


Bartosz Milewski - 2014
    Collected from the series of blog posts starting at: https://bartoszmilewski.com/2014/10/2...Hardcover available at: http://www.blurb.com/b/9008339-catego...

Introduction to Probability


Dimitri P. Bertsekas - 2002
    This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.

Make Your Own Neural Network


Tariq Rashid - 2016
     Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.