Book picks similar to
Elasticity by James R. Barber
engineering
mechanics
physics
solid-mechanics
The Art of Electronics
Paul Horowitz - 1980
Widely accepted as the authoritative text and reference on electronic circuit design, both analog and digital, this book revolutionized the teaching of electronics by emphasizing the methods actually used by circuit designers -- a combination of some basic laws, rules of thumb, and a large bag of tricks. The result is a largely nonmathematical treatment that encourages circuit intuition, brainstorming, and simplified calculations of circuit values and performance. The new Art of Electronics retains the feeling of informality and easy access that helped make the first edition so successful and popular. It is an ideal first textbook on electronics for scientists and engineers and an indispensable reference for anyone, professional or amateur, who works with electronic circuits.
Cad/CAM: Computer-Aided Design and Manufacturing
Mikell P. Groover - 1983
Sr/grad level Professional/Reference book for Computer CAD/CAM.
The Singularity is Near: When Humans Transcend Biology
Ray Kurzweil - 2005
In his classic The Age of Spiritual Machines, he argued that computers would soon rival the full range of human intelligence at its best. Now he examines the next step in this inexorable evolutionary process: the union of human and machine, in which the knowledge and skills embedded in our brains will be combined with the vastly greater capacity, speed, and knowledge-sharing ability of our creations.
Reluctant Genius: The Passionate Life and Inventive Mind of Alexander Graham Bell
Charlotte Gray - 2006
Who knew that he also was a pivotal figure in the development of the airplane, the hydrofoil, genetic engineering, and more? Charlotte Gray does, and she tells us how and why she brought to life the passionate mind and heart of the man behind so many amazing ideas and innovations. --Lauren Nemroff
Some Questions for Charlotte Gray
[image] 1. Most people picture Alexander Graham Bell as that grandfatherly looking man with a long white beard who invented the telephone. What's wrong with that image? The image of Alexander Graham Bell as a kindly Santa Claus figure is the one we all know: It is as familiar as the one of Einstein with his hair in a frizzy grey mass. But when Alexander Graham Bell was struggling to invent the telephone, he was a skinny, clean-shaven, neurotically intense young man and a hypochondriac, with obsessive work habits and a very volatile nature. Reading his letters and journals, I was shocked to discover how often he would ricochet between euphoria and depression. Invention was Alexander Graham Bell's passion, but I frequently wondered whether, if he had not had an early success and the right wife, his difficult personality would have prevented him achieving anything. I think it is important to revise the grandfatherly stereotype of Bell in order to show that invention is difficult, and inventors are not easy, placid people to live with. 2. In what way does Bell's genius different from other inventors of his age, such as Thomas Edison or the Wright brothers? The wonderful thing about the inventions of such nineteenth century giants as Bell, Edison and the Wright brothers is that, with a little bit of effort, even those of us who never did Grade 12 physics can actually understand how their inventions worked. One could never say that about today's microelectronic technology. Intuition and imagination were all crucial for the breakthroughs made by Edison, the Wright brothers and Bell. However, what sets Bell apart from Edison and the Wright brothers was that he didn't have an entrepreneurial bone in his body. He was more like a holdover from the eighteenth century Enlightenment, while the others were go-getting twentieth-century hustlers. Edison was always looking for financial backers; he announced his breakthroughs before he had even built working prototypes; he was one of the first inventors to put together a real R and D team at a purpose-built laboratory, at Menlo Park. He understood that invention is, in his own words, "One percent inspiration, ninety percent perspiration." Similarly the Wright Brothers were eager to make money out of their flying machines. They refused to share their technological breakthroughs, guarded their patents fiercely, and wouldn't give any demonstrations to the public of their biplanes. Bell was the opposite--totally absorbed in extending the frontiers of knowledge, and completely careless about commercial exploitation of his ideas. 3. Is it true that "necessity is the mother of invention" or is it something else? Invention has many mothers - the right materials, a widespread understanding that this will improve the world in some way, the right individual to pursue the elusive dream. In the case of the telephone, one can argue that there was no overwhelming necessity for a new form of communication: the telegraph had been working well for 30 years, and only a few people realized that a device that could carry the human voice, rather than the Morse code, would pull people together in a revolutionary way. As soon as telephones appeared in the market, their advantages were obvious. But there was still incredible resistance. In Britain, the upper classes were slow to acquire telephones because they posed a class issue: who should answer them? Everybody knew that, in a house with servants, the servant answered the door when the telegraph boy rang the bell. But should master or servant speak on the phone? The democratic nature of the telephone--anybody could use it, not just qualified operators--also shackled its spread. In Russia after the revolution, Stalin is said to have vetoed the idea of a modern telephone system. "It will unmake our work," the dictator decreed. "No greater instrument for counter-revolution and conspiracy can be imagined." So did necessity drive the invention of the telephone? No--when Bell first started speculating on its impact, people thought he was mad. But it quickly became a total necessity
imagine life without electronic communication today! 4. It was amazing to learn that Bell's mother and his wife were both deaf, and that from an early age he was immersed in research on the nature of sound and oral communication. How important were these personal relationships in shaping his outlook and inventions? One of my greatest surprises when I started research for Reluctant Genius was the discovery that Bell's first ambition was to be a teacher of the deaf, and that he remained committed to the cause of improved education for the hearing impaired throughout his life. I had no idea of this side of him, or of his long relationship with Helen Keller. The fact that the two most important women in his life, his mother and his wife, were deaf was of crucial importance both to his own work, and to his attitude to others. His respect for their intelligences and personalities meant that, unlike many of his contemporaries, he never assumed that deafness was linked to intellectual disability. Moreover, his scientific interest in their condition informed his telephone research. Because he knew why their ears didn't work, he understood how sound should reach the brain in a hearing person's ear, through the ear drum. None of his competitors made that intuitive leap. Their early attempts to build working telephones were foiled because they didn't include the diaphragm that mimicked the action of the ear drum, and which was the key feature of Bell's first phone. Lastly, Bell was also fascinated by the intergenerational transmission of deafness. This led to his research on genetics in general - and the program he initiated at his summer home, in Cape Breton, to breed a flock of "super sheep" that would always have twin births. 5. Bell's wife, Mabel Hubbard Bell, was a remarkable person in her own right. Why was it so important to tell her story? Too often, biographies of "Great Men" suggest they achieved everything by their own efforts. A few did, of course, but most depended on the support and encouragement of others--parents, partners, associates--to provide the right environment in which they could achieve their goals. Behind every great man
.This was the case with Alexander Graham Bell. He would always have had his "Eureka Moment", in the summer of 1874, when he realized how a "talking telegraph" might work. But without Mabel, we probably would never have heard of him. He would not have patented the invention or found the business partners who helped him moved his invention from the laboratory to the market place. Mabel's father, Gardiner Hubbard, was his patent lawyer: Mabel herself ensured that he went to the Philadelphia Exposition, in 1876, to demonstrate his new apparatus. In later years, Mabel provided all kinds of other practical help, in ensuring that her exasperating husband could focus on his inventions. She handled the financial side of their marriage: she found qualified young men who could help him work on his flying machines: she was always cheering him up and stroking his ego when he got depressed. And she created, along with their two daughters, a warm family environment which gave balance to Bell's life - and which so many of his contemporaries, including Thomas Edison, never enjoyed. I was determined to give Mabel her due in the story of Bell. I found her such an attractive and intriguing figure. She was stone deaf, ten years younger than her husband, and their relationship began as a teacher-student one. It would be easy to assume that this brilliant, world famous man would be the dominant figure in the relationship. In fact, the reverse is true. 6. What do you think Bell would think of cell phones, the internet and other wireless means of communication? Bell himself anticipated "electric communication": he was very frustrated by how long it took for a letter from Nova Scotia to reach Europe. I'm sure he would be delighted by the internet. However, he would be appalled by the constant buzz of other technological advances, and the way we've allowed them to trump all other forms of human intercourse. This is a man who wouldn't have a telephone in his own study, because its ring would disturb his train of thought. He was a gracious, well-mannered man who would have been horrified by the way many of us let our cell phones to interrupt our face-to-face conversations. And if somebody pulled out a Blackberry and started punching into it while Bell was speaking of him--well, Alec would have muttered, "Shee-e-esh" (the nearest he ever got to swearing) and stomped out of the room. 7. What was the most exciting research discovery that you made? As a biographer, I have to say that my most exciting discovery was the wealth of material I had to work with. Because Alexander Graham Bell could never speak to his wife on the telephone, he and Mabel exchanged long, intimate, colourful letters whenever they were apart--and that was often. I was thrilled to discover, at the Alexander Graham Bell Historic Site in Baddeck, Nova Scotia, 180 three-ring binders of family correspondence (another set is housed at the Library of Congress, Washington.) These letters let me explore the inner-workings of the mind of a genius, and of a remarkable marriage, in a way that I had hardly dared hope for. I was also amazed at the range of Bell's activities. The telephone, the photophone (which sent sounds down beams of light), an early iron lung, a desalination process for salt water, flying machines, hydrofoils, genetic experiments
his scientific interests were enormously varied. And at the same time, he was doing so much else, for example with the Smithsonian Institute, and the National Geographic Society. And throughout his career, there was his long-running commitment to deaf education. It was hard not to be overwhelmed! 8. What are you working on right now? Yes, I'm already launched on my next biography. (In fact, I find it very hard not to start my next book before the previous one is even in the stores--I have a psychological need to live both my own life and someone else's!) My next project is a short biography of Nellie McClung, the Canadian author and political activist.
Bright Earth: Art and the Invention of Color
Philip Ball - 1999
From Egyptian wall paintings to the Venetian Renaissance, impressionism to digital images, Philip Ball tells the fascinating story of how art, chemistry, and technology have interacted throughout the ages to render the gorgeous hues we admire on our walls and in our museums.Finalist for the 2002 National Book Critics Circle Award.
Quantum Enigma: Physics Encounters Consciousness
Bruce Rosenblum - 2006
Can you believe that physical reality is created by our observation of it? Physicists were forced to this conclusion, the quantum enigma, by what they observed in their laboratories.Trying to understand the atom, physicists built quantum mechanics and found, to their embarrassment, that their theory intimately connects consciousness with the physical world. Quantum Enigma explores what that implies and why some founders of the theory became the foremost objectors to it. Schr�dinger showed that it absurdly allowed a cat to be in a superposition simultaneously dead and alive. Einstein derided the theory's spooky interactions. With Bell's Theorem, we now know Schr�dinger's superpositions and Einstein's spooky interactions indeed exist.Authors Bruce Rosenblum and Fred Kuttner explain all of this in non-technical terms with help from some fanciful stories and bits about the theory's developers. They present the quantum mystery honestly, with an emphasis on what is and what is not speculation.Physics' encounter with consciousness is its skeleton in the closet. Because the authors open the closet and examine the skeleton, theirs is a controversial book. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is controversial.Every interpretation of quantum physics encounters consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum physics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing.Readers are brought to a boundary where the particular expertise of physicists is no longer a sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves.
Power Electronics for Technology
Ashfaq Ahmed - 1998
Reflecting the increasing demand for efficient conversion and control of electrical power, it considers the latest power devices, circuits, and control schemes that continue to extend power electronics technology to new applications areas. Presents material methodically - first establishing the background theory before going on to specific applications. Familiarizes readers with the analysis and operation of various power conversions circuits that have applications at high power levels, and formulates equations that govern the behavior of these circuits. Discusses the application of power electronic devices in uncontrolled and controlled single phase rectifiers, inverters, ac voltage controllers, cycloconverters, and dc choppers, and demonstrates voltage and current waveform analysis for the output, starting with a simple resistive load to more practical inductive loads. Includes many worked examples, basic formulas, and an abundance of illustrations and diagrams.
In Search of the Ultimate Building Blocks
Gerard 't Hooft - 1992
Gerard 't Hooft was closely involved in many of the advances in modern theoretical physics that led to improved understanding of elementary particles, and this is a first-hand account of one of the most creative and exciting periods of discovery in the history of physics. Using language a layperson can understand, this narrative touches on many central topics and ideas, such as quarks and quantum physics; supergravity, superstrings and superconductivity; the Standard Model and grand unification; eleven-dimensional space time and black holes. This fascinating personal account of the past thirty years in one of the most dramatic areas in twentieth-century physics will be of interest to professional physicists and physics students, as well as the educated general reader with an interest in one of the most exciting scientific detective stories ever.
Schaum's Outline of Calculus
Frank Ayres Jr. - 1990
They'll also find the related analytic geometry much easier. The clear review of algebra and geometry in this edition will make calculus easier for students who wish to strengthen their knowledge in these areas. Updated to meet the emphasis in current courses, this new edition of a popular guide--more than 104,000 copies were bought of the prior edition--includes problems and examples using graphing calculators..
Taming the Sun: Innovations to Harness Solar Energy and Power the Planet
Varun Sivaram - 2018
What's more, its potential is nearly limitless--every hour the sun beams down more energy than the world uses in a year. But in Taming the Sun, energy expert Varun Sivaram warns that the world is not yet equipped to harness erratic sunshine to meet most of its energy needs. And if solar's current surge peters out, prospects for replacing fossil fuels and averting catastrophic climate change will dim.Innovation can brighten those prospects, Sivaram explains, drawing on firsthand experience and original research spanning science, business, and government. Financial innovation is already enticing deep-pocketed investors to fund solar projects around the world, from the sunniest deserts to the poorest villages. Technological innovation could replace today's solar panels with coatings as cheap as paint and employ artificial photosynthesis to store intermittent sunshine as convenient fuels. And systemic innovation could add flexibility to the world's power grids and other energy systems so they can dependably channel the sun's unreliable energy.Unleashing all this innovation will require visionary public policy: funding researchers developing next-generation solar technologies, refashioning energy systems and economic markets, and putting together a diverse clean energy portfolio. Although solar can't power the planet by itself, it can be the centerpiece of a global clean energy revolution.A Council on Foreign Relations Book
The Idea Factory: Bell Labs and the Great Age of American Innovation
Jon Gertner - 2012
From the transistor to the laser, it s hard to find an aspect of modern life that hasn t been touched by Bell Labs. Why did so many transformative ideas come from Bell Labs? In "The Idea Factory," Jon Gertner traces the origins of some of the twentieth century s most important inventions and delivers a riveting and heretofore untold chapter of American history. At its heart this is a story about the life and work of a small group of brilliant and eccentric men Mervin Kelly, Bill Shockley, Claude Shannon, John Pierce, and Bill Baker who spent their careers at Bell Labs. Their job was to research and develop the future of communications. Small-town boys, childhood hobbyists, oddballs: they give the lie to the idea that Bell Labs was a grim cathedral of top-down command and control.Gertner brings to life the powerful alchemy of the forces at work behind Bell Labs inventions, teasing out the intersections between science, business, and society. He distills the lessons that abide: how to recruit and nurture young talent; how to organize and lead fractious employees; how to find solutions to the most stubbornly vexing problems; how to transform a scientific discovery into a marketable product, then make it even better, cheaper, or both. Today, when the drive to invent has become a mantra, Bell Labs offers us a way to enrich our understanding of the challenges and solutions to technological innovation. Here, after all, was where the foundational ideas on the management of innovation were born. "The Idea Factory" is the story of the origins of modern communications and the beginnings of the information age a deeply human story of extraordinary men who were given extraordinary means time, space, funds, and access to one another and edged the world into a new dimension."
Einstein's Fridge: How the Difference Between Hot and Cold Explains the Universe
Paul Sen - 2021
“Although thermodynamics has been studied for hundreds of years…few nonscientists appreciate how its principles have shaped the modern world” (Scientific American). Thermodynamics—the branch of physics that deals with energy and entropy—governs everything from the behavior of living cells to the black hole at the center of our galaxy. Not only that, but thermodynamics explains why we must eat and breathe, how lights turn on, the limits of computing, and how the universe will end. The brilliant people who decoded its laws came from every branch of the sciences; they were engineers, physicists, chemists, biologists, cosmologists, and mathematicians. From French military engineer and physicist Sadi Carnot to Lord Kelvin, James Joule, Albert Einstein, Emmy Noether, Alan Turing, and Stephen Hawking, author Paul Sen introduces us to all of the players who passed the baton of scientific progress through time and across nations. Incredibly driven and idealistic, these brave pioneers performed groundbreaking work often in the face of torment and tragedy. Their discoveries helped create the modern world and transformed every branch of science, from biology to cosmology. “Elegantly written and engaging” (Financial Times), Einstein’s Fridge brings to life one of the most important scientific revolutions of all time and captures the thrill of discovery and the power of scientific progress to shape the course of history.
Transport Phenomena
R. Byron Bird - 1960
* Enhanced sections throughout text provide much firmer foundation than the first edition. * Literature citations are given throughout for reference to additional material.
What Can a Body Do?: How We Meet the Built World
Sara Hendren - 2020
Yet unless, or until, a misfit between our own body and the world is acute enough to be understood as disability, we may never stop to consider--or reconsider--the hidden assumptions on which our everyday environment is built.In a series of vivid stories drawn from the lived experience of disability and the ideas and innovations that have emerged from it--from cyborg arms to customizable cardboard chairs to deaf architecture--Sara Hendren invites us to rethink the things and settings we live with. What might assistance based on the body's stunning capacity for adaptation--rather than a rigid insistence on "normalcy"--look like? Can we foster interdependent, not just independent, living? How do we creatively engineer public spaces that allow us all to navigate our common terrain? By rendering familiar objects and environments newly strange and wondrous, What Can a Body Do? helps us imagine a future that will better meet the extraordinary range of our collective needs and desires.