UNIX and Linux System Administration Handbook


Evi Nemeth - 2010
    This is one of those cases. The UNIX System Administration Handbook is one of the few books we ever measured ourselves against." -From the Foreword by Tim O'Reilly, founder of O'Reilly Media "This book is fun and functional as a desktop reference. If you use UNIX and Linux systems, you need this book in your short-reach library. It covers a bit of the systems' history but doesn't bloviate. It's just straightfoward information delivered in colorful and memorable fashion." -Jason A. Nunnelley"This is a comprehensive guide to the care and feeding of UNIX and Linux systems. The authors present the facts along with seasoned advice and real-world examples. Their perspective on the variations among systems is valuable for anyone who runs a heterogeneous computing facility." -Pat Parseghian The twentieth anniversary edition of the world's best-selling UNIX system administration book has been made even better by adding coverage of the leading Linux distributions: Ubuntu, openSUSE, and RHEL. This book approaches system administration in a practical way and is an invaluable reference for both new administrators and experienced professionals. It details best practices for every facet of system administration, including storage management, network design and administration, email, web hosting, scripting, software configuration management, performance analysis, Windows interoperability, virtualization, DNS, security, management of IT service organizations, and much more. UNIX(R) and Linux(R) System Administration Handbook, Fourth Edition, reflects the current versions of these operating systems: Ubuntu(R) LinuxopenSUSE(R) LinuxRed Hat(R) Enterprise Linux(R)Oracle America(R) Solaris(TM) (formerly Sun Solaris)HP HP-UX(R)IBM AIX(R)

Data Science at the Command Line: Facing the Future with Time-Tested Tools


Jeroen Janssens - 2014
    You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data.To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools.Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line.Obtain data from websites, APIs, databases, and spreadsheetsPerform scrub operations on plain text, CSV, HTML/XML, and JSONExplore data, compute descriptive statistics, and create visualizationsManage your data science workflow using DrakeCreate reusable tools from one-liners and existing Python or R codeParallelize and distribute data-intensive pipelines using GNU ParallelModel data with dimensionality reduction, clustering, regression, and classification algorithms

Programming the Semantic Web


Toby Segaran - 2009
    You'll learn how to incorporate existing data sources into semantically aware applications and publish rich semantic data. Each chapter walks you through a single piece of semantic technology and explains how you can use it to solve real problems. Whether you're writing a simple mashup or maintaining a high-performance enterprise solution,Programming the Semantic Web provides a standard, flexible approach for integrating and future-proofing systems and data. This book will help you:Learn how the Semantic Web allows new and unexpected uses of data to emergeUnderstand how semantic technologies promote data portability with a simple, abstract model for knowledge representationBecome familiar with semantic standards, such as the Resource Description Framework (RDF) and the Web Ontology Language (OWL)Make use of semantic programming techniques to both enrich and simplify current web applications

A Smarter Way to Learn JavaScript: The new approach that uses technology to cut your effort in half


Mark Myers - 2013
     Master each chapter with free interactive exercises online. Live simulation lets you see your practice code run in your browser. 2,000 lines of color-keyed sample code break it all down into easy-to-learn chunks. Extra help through the rough spots so you're less likely to get stuck. Tested on non-coders—including the author's technophobe wife. Become fluent in all the JavaScript fundamentals, in half the time. Display alert messages to the user Gather information through prompts Manipulate variables Build statements Do math Use operators Concatenate text Run routines based on conditions Compare values Work with arrays Run automated routines Display custom elements on the webpage Generate random numbers Manipulate decimals Round numbers Create loops Use functions Find the current date and time Measure time intervals Create a timer Respond to the user's actions Swap images Control colors on the webpage Change any element on the webpage Improvise new HTML markup on the fly Use the webpage DOM structure Insert comments Situate scripts effectively Create and change objects Automate object creation Control the browser's actions Fill the browser window with custom content Check forms for invalid entries Deal with errors Make a more compelling website Increase user-friendliness Keep your user engaged

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

The AWK Programming Language


Alfred V. Aho - 1988
    In 1985, a new version of the language was developed, incorporating additional features such as multiple input files, dynamic regular expressions, and user-defined functions. This new version is available for both Unix and MS-DOS. This is the first book on AWK. It begins with a tutorial that shows how easy AWK is to use. The tutorial is followed by a comprehensive manual for the new version of AWK. Subsequent chapters illustrate the language by a range of useful applications, such as: Retrieving, transforming, reducing, and validating data Managing small, personal databases Text processing Little languages Experimenting with algorithms The examples illustrates the books three themes: showing how to use AWK well, demonstrating AWKs versatility, and explaining how common computing operations are done. In addition, the book contains two appendixes: summary of the language, and answers to selected exercises.

The Art of Computer Programming, Volume 1: Fundamental Algorithms


Donald Ervin Knuth - 1973
     -Byte, September 1995 I can't begin to tell you how many pleasurable hours of study and recreation they have afforded me! I have pored over them in cars, restaurants, at work, at home... and even at a Little League game when my son wasn't in the line-up. -Charles Long If you think you're a really good programmer... read [Knuth's] Art of Computer Programming... You should definitely send me a resume if you can read the whole thing. -Bill Gates It's always a pleasure when a problem is hard enough that you have to get the Knuths off the shelf. I find that merely opening one has a very useful terrorizing effect on computers. -Jonathan Laventhol This first volume in the series begins with basic programming concepts and techniques, then focuses more particularly on information structures-the representation of information inside a computer, the structural relationships between data elements and how to deal with them efficiently. Elementary applications are given to simulation, numerical methods, symbolic computing, software and system design. Dozens of simple and important algorithms and techniques have been added to those of the previous edition. The section on mathematical preliminaries has been extensively revised to match present trends in research. Ebook (PDF version) produced by Mathematical Sciences Publishers (MSP), http: //msp.org

Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People


Aditya Y. Bhargava - 2015
    The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.

AWS Lambda: A Guide to Serverless Microservices


Matthew Fuller - 2016
    Lambda enables users to develop code that executes in response to events - API calls, file uploads, schedules, etc - and upload it without worrying about managing traditional server metrics such as disk space, memory, or CPU usage. With its "per execution" cost model, Lambda can enable organizations to save hundreds or thousands of dollars on computing costs. With in-depth walkthroughs, large screenshots, and complete code samples, the reader is guided through the step-by-step process of creating new functions, responding to infrastructure events, developing API backends, executing code at specified intervals, and much more. Introduction to AWS Computing Evolution of the Computing Workload Lambda Background The Internals The Basics Functions Languages Resource Allocation Getting Set Up Hello World Uploading the Function Working with Events AWS Events Custom Events The Context Object Properties Methods Roles and Permissions Policies Trust Relationships Console Popups Cross Account Access Dependencies and Resources Node Modules OS Dependencies OS Resources OS Commands Logging Searching Logs Testing Your Function Lambda Console Tests Third-Party Testing Libraries Simulating Context Hello S3 Object The Bucket The Role The Code The Event The Trigger Testing When Lambda Isn’t the Answer Host Access Fine-Tuned Configuration Security Long-Running Tasks Where Lambda Excels AWS Event-Driven Tasks Scheduled Events (Cron) Offloading Heavy Processing API Endpoints Infrequently Used Services Real-World Use Cases S3 Image Processing Shutting Down Untagged Instances Triggering CodeDeploy with New S3 Uploads Processing Inbound Email Enforcing Security Policies Detecting Expiring Certificates Utilizing the AWS API Execution Environment The Code Pipeline Cold vs. Hot Execution What is Saved in Memory Scaling and Container Reuse From Development to Deployment Application Design Development Patterns Testing Deployment Monitoring Versioning and Aliasing Costs Short Executions Long-Running Processes High-Memory Applications Free Tier Calculating Pricing CloudFormation Reusable Template with Minimum Permissions Cross Account Access CloudWatch Alerts AWS API Gateway API Gateway Event Creating the Lambda Function Creating a New API, Resource, and Method Initial Configuration Mapping Templates Adding a Query String Using HTTP Request Information Within Lambda Deploying the API Additional Use Cases Lambda Competitors Iron.io StackHut WebTask.io Existing Cloud Providers The Future of Lambda More Resources Conclusion

The Little Schemer


Daniel P. Friedman - 1974
    The authors' enthusiasm for their subject is compelling as they present abstract concepts in a humorous and easy-to-grasp fashion. Together, these books will open new doors of thought to anyone who wants to find out what computing is really about. The Little Schemer introduces computing as an extension of arithmetic and algebra; things that everyone studies in grade school and high school. It introduces programs as recursive functions and briefly discusses the limits of what computers can do. The authors use the programming language Scheme, and interesting foods to illustrate these abstract ideas. The Seasoned Schemer informs the reader about additional dimensions of computing: functions as values, change of state, and exceptional cases. The Little LISPer has been a popular introduction to LISP for many years. It had appeared in French and Japanese. The Little Schemer and The Seasoned Schemer are worthy successors and will prove equally popular as textbooks for Scheme courses as well as companion texts for any complete introductory course in Computer Science.

Python for Informatics: Exploring Information: Exploring Information


Charles Severance - 2002
    You can think of Python as your tool to solve problems that are far beyond the capability of a spreadsheet. It is an easy-to-use and easy-to learn programming language that is freely available on Windows, Macintosh, and Linux computers. There are free downloadable copies of this book in various electronic formats and a self-paced free online course where you can explore the course materials. All the supporting materials for the book are available under open and remixable licenses. This book is designed to teach people to program even if they have no prior experience.

Programming Pearls


Jon L. Bentley - 1986
    Jon has done a wonderful job of updating the material. I am very impressed at how fresh the new examples seem." - Steve McConnell, author, Code CompleteWhen programmers list their favorite books, Jon Bentley's collection of programming pearls is commonly included among the classics. Just as natural pearls grow from grains of sand that irritate oysters, programming pearls have grown from real problems that have irritated real programmers. With origins beyond solid engineering, in the realm of insight and creativity, Bentley's pearls offer unique and clever solutions to those nagging problems. Illustrated by programs designed as much for fun as for instruction, the book is filled with lucid and witty descriptions of practical programming techniques and fundamental design principles. It is not at all surprising that Programming Pearls has been so highly valued by programmers at every level of experience. In this revision, the first in 14 years, Bentley has substantially updated his essays to reflect current programming methods and environments. In addition, there are three new essays on (1) testing, debugging, and timing; (2) set representations; and (3) string problems. All the original programs have been rewritten, and an equal amount of new code has been generated. Implementations of all the programs, in C or C++, are now available on the Web.What remains the same in this new edition is Bentley's focus on the hard core of programming problems and his delivery of workable solutions to those problems. Whether you are new to Bentley's classic or are revisiting his work for some fresh insight, this book is sure to make your own list of favorites.

The Elements of Programming Style


Brian W. Kernighan - 1974
    Elements of programming.

The Psychology of Computer Programming


Gerald M. Weinberg - 1971
    Weinberg adds new insights and highlights the similarities and differences between now and then. Using a conversational style that invites the reader to join him, Weinberg reunites with some of his most insightful writings on the human side of software engineering.Topics include egoless programming, intelligence, psychological measurement, personality factors, motivation, training, social problems on large projects, problem-solving ability, programming language design, team formation, the programming environment, and much more.Dorset House Publishing is proud to make this important text available to new generations of programmers -- and to encourage readers of the first edition to return to its valuable lessons.

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases