Professor Maxwell’s Duplicitous Demon: The Life and Science of James Clerk Maxwell


Brian Clegg - 2019
    But ask a physicist and there’s no doubt that James Clerk Maxwell will be near the top of the list.  Maxwell, an unassuming Victorian Scotsman, explained how we perceive colour. He uncovered the way gases behave. And, most significantly, he transformed the way physics was undertaken in his explanation of the interaction of electricity and magnetism, revealing the nature of light and laying the groundwork for everything from Einstein’s special relativity to modern electronics.   Along the way, he set up one of the most enduring challenges in physics, one that has taxed the best minds ever since. ‘Maxwell’s demon’ is a tiny but thoroughly disruptive thought experiment that suggests the second law of thermodynamics, the law that governs the flow of time itself, can be broken. This is the story of a groundbreaking scientist, a great contributor to our understanding of the way the world works, and his duplicitous demon.

A Short History of Nearly Everything


Bill Bryson - 2003
    Taking as territory everything from the Big Bang to the rise of civilization, Bryson seeks to understand how we got from there being nothing at all to there being us. To that end, he has attached himself to a host of the world’s most advanced (and often obsessed) archaeologists, anthropologists, and mathematicians, travelling to their offices, laboratories, and field camps. He has read (or tried to read) their books, pestered them with questions, apprenticed himself to their powerful minds. A Short History of Nearly Everything is the record of this quest, and it is a sometimes profound, sometimes funny, and always supremely clear and entertaining adventure in the realms of human knowledge, as only Bill Bryson can render it. Science has never been more involving or entertaining.

Earthquake Storms: The Fascinating History and Volatile Future of the San Andreas Fault


John Dvorak - 2014
    Hundreds of thousands of people drive across it every day. The San Andreas Fault is everywhere, and primed for a colossal quake. For decades, scientists have warned that such a sudden shifting of the Earth’s crust is inevitable. In fact, it is a geologic necessity.The San Andreas fault runs almost the entire length of California, from the redwood forest to the east edge of the Salton Sea. Along the way, it passes through two of the largest urban areas of the country—San Francisco and Los Angeles. Dozens of major highways and interstates cross it. Scores of housing developments have been planted over it. The words “San Andreas” are so familiar today that they have become synonymous with earthquake.Yet, few people understand the San Andreas or the network of subsidiary faults it has spawned. Some run through Hollywood, others through Beverly Hills and Santa Monica. The Hayward fault slices the football stadium at the University of California in half. Even among scientists, few appreciate that the San Andreas fault is a transient, evolving system that, as seen today, is younger than the Grand Canyon and key to our understanding of earthquakes worldwide.

How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind


Wallace S. Broecker - 1995
    

Fact or Fiction: Science Tackles 58 Popular Myths


Scientific American - 2013
    Drawing from Scientific American's "Fact or Fiction" and "Strange But True" columns, we've selected fifty-eight of the most surprising, fascinating, useful, and just plain wacky topics confronted by our writers over the years.

Uranium: War, Energy, and the Rock That Shaped the World


Tom Zoellner - 2009
    After World War II, it reshaped the global order-whoever could master uranium could master the world. Marie Curie gave us hope that uranium would be a miracle panacea, but the Manhattan Project gave us reason to believe that civilization would end with apocalypse. Slave labor camps in Africa and Eastern Europe were built around mine shafts and America would knowingly send more than six hundred uranium miners to their graves in the name of national security. Fortunes have been made from this yellow dirt; massive energy grids have been run from it. Fear of it panicked the American people into supporting a questionable war with Iraq and its specter threatens to create another conflict in Iran. Now, some are hoping it can help avoid a global warming catastrophe. In "Uranium," Tom Zoellner takes readers around the globe in this intriguing look at the mineral that can sustain life or destroy it.

Powering the Future


Robert B. Laughlin - 2011
    Laughlin transports us two centuries into the future, when we've ceased to use carbon from the ground--either because humans have banned carbon burning or because fuel has simply run out. Boldly, Laughlin predicts no earth-shattering transformations will have taken place. Six generations from now, there will still be soccer moms, shopping malls, and business trips. Firesides will still be snug and warm.How will we do it? Not by discovering a magic bullet to slay our energy problems, but through a slew of fascinating technologies, drawing on wind, water, and fire. Powering the Future is an objective yet optimistic tour through alternative fuel sources, set in a world where we've burned every last drop of petroleum and every last shovelful of coal.The Predictable: Fossil fuels will run out. The present flow of crude oil out of the ground equals in one day the average flow of the Mississippi River past New Orleans in thirteen minutes. If you add the energy equivalents of gas and coal, it's thirty-six minutes. At the present rate of consumption, we'll be out of fossil fuels in two centuries' time. We always choose the cheapest gas. From the nineteenth-century consolidation of the oil business to the California energy crisis of 2000-2001, the energy business has shown, time and again, how low prices dominate market share. Market forces--not green technology--will be the driver of energy innovation in the next 200 years. The laws of physics remain fixed. Energy will still be conserved, degrade entropically with use, and have to be disposed of as waste heat into outer space. How much energy a fuel can pack away in a given space is fixed by quantum mechanics--and if we want to keep flying jet planes, we will need carbon-based fuels. The Potential: Animal waste. If dried and burned, the world's agricultural manure would supply about one-third as much energy as all the coal we presently consume. Trash. The United States disposes of 88 million tons of carbon in its trash per year. While the incineration of waste trash is not enough to contribute meaningfully to the global demand for energy, it will constrain fuel prices by providing a cheap supply of carbon. Solar energy. The power used to light all the cities around the world is only one-millionth of the total power of sunlight pouring down on earth's daytime side. And the amount of hydropump storage required to store the world's daily electrical surge is equal to only eight times the volume of Lake Mead. PRAISE FOR ROBERT B. LAUGHLIN -Perhaps the most brilliant theoretical physicist since Richard Feynman---George Chapline, Lawrence Livermore National Laboratory -Powerful but controversial.--- Financial Times -[Laughlin's] company ... is inspirational.- --New Scientist

The Sun's Heartbeat: And Other Stories from the Life of the Star That Powers Our Planet


Bob Berman - 2011
    And from the ancients who plotted its path at Stonehenge to the modern scientists who unraveled the nuclear fusion reaction that turns mass into energy, humankind has sought to solve its mysteries. In this lively biography of the sun, Bob Berman ranges from its stellar birth to its spectacular future death with a focus on the wondrous and enthralling, and on the heartbreaking sacrifice, laughable errors, egotistical battles, and brilliant inspirations of the people who have tried to understand its power. What, exactly, are the ghostly streaks of light astronauts see-but can't photograph-when they're in space? And why is it impossible for two people to see the exact same rainbow? Why are scientists beginning to think that the sun is safer than sunscreen? And how does the fluctuation of sunspots-and its heartbeat-affect everything from satellite communications to wheat production across the globe? Peppered with mind-blowing facts and memorable anecdotes about spectral curiosities-the recently-discovered "second sun" that lurks beneath the solar surface, the eerie majesty of a total solar eclipse-The Sun's Heartbeat offers a robust and entertaining narrative of how the Sun has shaped humanity and our understanding of the universe around us.

North Pole, South Pole: The Epic Quest to Solve the Great Mystery of Earth’s Magnetism


Gillian Turner - 2010
    Here, for the first time, is the complete history of the quest to understand Earth’s magnetism—from the ancient Greeks’ fascination with lodestone, to the geological discovery that the North Pole has not always been in the North—and to the astonishing modern conclusions that finally revealed the true source.Richly illustrated and skillfully told, North Pole, South Pole unfolds the human story behind the science: that of the inquisitive, persevering, and often dissenting thinkers who unlocked the secrets at our planet’s core.

An Ocean Of Air: A Natural History Of The Atmosphere


Gabrielle Walker - 2007
    It's the most miraculous substance on earth, responsible for our food, our weather, our water, and our ability to hear. In this exuberant book, gifted science writer Gabrielle Walker peels back the layers of our atmosphere with the stories of the people who uncovered its secrets: - A flamboyant Renaissance Italian discovers how heavy our air really is: The air filling Carnegie Hall, for example, weighs seventy thousand pounds. - A one-eyed barnstorming pilot finds a set of winds that constantly blow five miles above our heads. - An impoverished American farmer figures out why hurricanes move in a circle by carving equations with his pitchfork on a barn door. - A well-meaning inventor nearly destroys the ozone layer. - A reclusive mathematical genius predicts, thirty years before he's proved right, that the sky contains a layer of floating metal fed by the glowing tails of shooting stars.

Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking


William H. Cropper - 2001
    William H. Cropper vividly portrays the life and accomplishments of such giants as Galileo and Isaac Newton, Marie Curie and Ernest Rutherford, Albert Einstein and NielsBohr, right up to contemporary figures such as Richard Feynman, Murray Gell-Mann, and Stephen Hawking. We meet scientists--all geniuses--who could be gregarious, aloof, unpretentious, friendly, dogged, imperious, generous to colleagues or contentious rivals. As Cropper captures their personalities, he also offers vivid portraits of their great moments of discovery, their bitter feuds, their relations with family and friends, their religious beliefs and education. In addition, Cropper has grouped these biographies by discipline--mechanics, thermodynamics, particle physics, and others--eachsection beginning with a historical overview. Thus in the section on quantum mechanics, readers can see how the work of Max Planck influenced Niels Bohr, and how Bohr in turn influenced Werner Heisenberg.Our understanding of the physical world has increased dramatically in the last four centuries. With Great Physicists, readers can retrace the footsteps of the men and women who led the way.

The Planet in a Pebble: A Journey Into Earth's Deep History


Jan Zalasiewicz - 2010
    Indeed, starting from this tiny, common speck, Jan Zalasiewicz offers readers a stimulating tour that begins with the Universe's dramatic birth in the unimaginable violence of the Big Bang and explores the construction of the Solar System and the origins of our own planet. Zalasiewicz shows the almost incredible complexity present in the apparently mundane pebble, starting with the astonishing number of atoms in each. We learn that many events in the Earth's ancient past can be deciphered from a pebble: volcanic eruptions; the lives and deaths of extinct animals and plants; the alien nature of long-vanished oceans; and even the creations of fool's gold and oil deep underground. Zalasiewicz also demonstrates how geologists reach deep into the Earth's past by forensic analysis of even the tiniest amounts of mineral matter. The pebble may be small, and ordinary, but it is also an eloquent part of our Earth's extraordinary, never-ending story.

AMERICA The Story of Us Book 1: The World Comes To America


Kevin Baker - 2012
    

The Particles of the Universe


Jeff Yee - 2012
    Everything around us, including matter, is energy. A deep look into the mysteries of the subatomic world – the particles that make up the atom – provides answers to basic questions about how the universe works. To solve the future of mankind’s energy needs we need to understand the basic building blocks of the universe, including the atom and its parts. By exploring the subatomic world we’ll find more answers to our questions about time, forces like gravity and the matter that surrounds us. More importantly, we’ll find new ways to tap into the energy that exists around us to power our growing needs. In a new branch of particle physics, where tiny particles are thought of as energy waves, we find new answers that may help us in our quest to find alternative energy sources.

Universe on A T-Shirt: The Quest for the Theory of Everything


Dan Falk - 2002
    - This is the best kind of popular science: informed, impassioned, and highly accessible.- Compare it to Stephen Hawking's The Universe in a Nutshell, but broader in scope and much more readable.- A crossover for the Young Adult market, now in the perfect format.