Book picks similar to
Linear Algebra: Theory, Intuition, Code by Mike X. Cohen
math
amazon-import
cs-craft
development
Statistics Essentials for Dummies
Deborah J. Rumsey - 2010
Free of review and ramp-up material, Statistics Essentials For Dummies sticks to the point, with content focused on key course topics only. It provides discrete explanations of essential concepts taught in a typical first semester college-level statistics course, from odds and error margins to confidence intervals and conclusions. This guide is also a perfect reference for parents who need to review critical statistics concepts as they help high school students with homework assignments, as well as for adult learners headed back into the classroom who just need a refresher of the core concepts. The Essentials For Dummies Series Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.
The Science of Information: From Language to Black Holes
Benjamin Schumacher - 2015
Never before in history have we been able to acquire, record, communicate, and use information in so many different forms. Never before have we had access to such vast quantities of data of every kind. This revolution goes far beyond the limitless content that fills our lives, because information also underlies our understanding of ourselves, the natural world, and the universe. It is the key that unites fields as different as linguistics, cryptography, neuroscience, genetics, economics, and quantum mechanics. And the fact that information bears no necessary connection to meaning makes it a profound puzzle that people with a passion for philosophy have pondered for centuries.Table of ContentsLECTURE 1The Transformability of Information 4LECTURE 2Computation and Logic Gates 17LECTURE 3Measuring Information 26LECTURE 4Entropy and the Average Surprise 34LECTURE 5Data Compression and Prefix-Free Codes 44LECTURE 6Encoding Images and Sounds 57LECTURE 7Noise and Channel Capacity 69LECTURE 8Error-Correcting Codes 82LECTURE 9Signals and Bandwidth 94LECTURE 10Cryptography and Key Entropy 110LECTURE 11Cryptanalysis and Unraveling the Enigma 119LECTURE 12Unbreakable Codes and Public Keys 130LECTURE 13What Genetic Information Can Do 140LECTURE 14Life’s Origins and DNA Computing 152LECTURE 15Neural Codes in the Brain 169LECTURE 16Entropy and Microstate Information 185LECTURE 17Erasure Cost and Reversible Computing 198LECTURE 18Horse Races and Stock Markets 213LECTURE 19Turing Machines and Algorithmic Information 226LECTURE 20Uncomputable Functions and Incompleteness 239LECTURE 21Qubits and Quantum Information 253LECTURE 22Quantum Cryptography via Entanglement 266LECTURE 23It from Bit: Physics from Information 281LECTURE 24The Meaning of Information 293
The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics
Karl Sabbagh - 2002
They speak of it in awed terms and consider it to be an even more difficult problem than Fermat's last theorem, which was finally proven by Andrew Wiles in 1995.In The Riemann Hypothesis, acclaimed author Karl Sabbagh interviews some of the world's finest mathematicians who have spent their lives working on the problem--and whose approaches to meeting the challenges thrown up by the hypothesis are as diverse as their personalities.Wryly humorous, lively, accessible and comprehensive, The Riemann Hypothesis is a compelling exploration of the people who do math and the ideas that motivate them to the brink of obsession--and a profound meditation on the ultimate meaning of mathematics.
In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation
William J. Cook - 2011
In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets.In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.
Thomas' Calculus, Early Transcendentals, Media Upgrade
George B. Thomas Jr. - 2002
This book offers a full range of exercises, a precise and conceptual presentation, and a new media package designed specifically to meet the needs of today's readers. The exercises gradually increase in difficulty, helping readers learn to generalize and apply the concepts. The refined table of contents introduces the exponential, logarithmic, and trigonometric functions in Chapter 7 of the text.KEY TOPICS Functions, Limits and Continuity, Differentiation, Applications of Derivatives, Integration, Applications of Definite Integrals, Integrals and Transcendental Functions, Techniques of Integration, Further Applications of Integration, Conic Sections and Polar Coordinates, Infinite Sequences and Series, Vectors and the Geometry of Space, Vector-Valued Functions and Motion in Space, Partial Derivatives, Multiple Integrals, Integration in Vector Fields.MARKET For all readers interested in Calculus.
Turing's Vision: The Birth of Computer Science
Chris Bernhardt - 2016
This groundbreaking and powerful theory now forms the basis of computer science. In Turing's Vision, Chris Bernhardt explains the theory, Turing's most important contribution, for the general reader. Bernhardt argues that the strength of Turing's theory is its simplicity, and that, explained in a straightforward manner, it is eminently understandable by the nonspecialist. As Marvin Minsky writes, -The sheer simplicity of the theory's foundation and extraordinary short path from this foundation to its logical and surprising conclusions give the theory a mathematical beauty that alone guarantees it a permanent place in computer theory.- Bernhardt begins with the foundation and systematically builds to the surprising conclusions. He also views Turing's theory in the context of mathematical history, other views of computation (including those of Alonzo Church), Turing's later work, and the birth of the modern computer.In the paper, -On Computable Numbers, with an Application to the Entscheidungsproblem, - Turing thinks carefully about how humans perform computation, breaking it down into a sequence of steps, and then constructs theoretical machines capable of performing each step. Turing wanted to show that there were problems that were beyond any computer's ability to solve; in particular, he wanted to find a decision problem that he could prove was undecidable. To explain Turing's ideas, Bernhardt examines three well-known decision problems to explore the concept of undecidability; investigates theoretical computing machines, including Turing machines; explains universal machines; and proves that certain problems are undecidable, including Turing's problem concerning computable numbers.
Philosophy of Mathematics: Selected Readings
Paul Benacerraf - 1983
In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Godel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.
Mummy Math: An Adventure in Geometry
Cindy Neuschwander - 2005
FWUMP! A secret door suddenly closed behind them . . .Matt and Bibi use math to escape from a pharaoh's tomb!When the Zills family is summoned to Egypt to help find the hidden burial site of an ancient pharaoh, Matt and Bibi are locked into an adventure they did not expect. Stuck inside a pyramid with only each other, their dog Riley, and geometric hieroglyphics to help them find their way, the twins must use their math knowledge to solve the riddles on the walls and locate the burial chamber. Luckily, the two know their stuff when it comes to geometric solids.
Computers and Intractability: A Guide to the Theory of NP-Completeness
Michael R. Garey - 1979
Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.
The Compleat Strategyst: Being a Primer on the Theory of Games of Strategy
J.D. Williams - 1965
D. Williams wrote this entertaining, witty introduction for the nonscientist, game theory was still a somewhat mysterious subject familiar to very few scientists beyond those researchers, like himself, working for the military. Now, over thirty years after its original publication as a Rand Corporation research study, his light-hearted though thoroughly effective primer is the recognized classic introduction to an increasingly applicable discipline. Used by amateurs, professionals, and students throughout the world in the classroom, on the job, and for personal amusement, the book has been through ten printings, and has been translated into at least five languages (including Russian and Japanese).Revised, updated, and available for the first time in an inexpensive paperback edition, The Compleat Strategyst is a highly entertaining text essential for anyone interested in this provocative and engaging area of modern mathematics. In fully illustrated chapters complete with everyday examples and word problems, Williams offers readers a working understanding of the possible methods for selecting strategies in a variety of situations, simple to complex. With just a basic understanding of arithmetic, anyone can grasp all necessary aspects of two-, three-, four-, and larger strategy games with two or more sets of inimical interests and a limitless array of zero-sum payoffs.As research and study continues not only in this new discipline but in the related areas of statistics, probability and behavioral science, understanding of games, decision making, and the development of strategies will be increasingly important. In the areas of economics, sociology, politics, and the military, game theory is sure to have an even wider impact. For students and amateurs fascinated by game theory's implications there is no better, immediately applicable, or more entertaining introduction to the subject than this engaging text by the late J. D. Williams, Professor of Mathematics at Princeton University and a member of the Research Council of The Rand Corporation.
Adventures of a Computational Explorer
Stephen Wolfram - 2019
In this lively book of essays, Stephen Wolfram takes the reader along on some of his most surprising and engaging intellectual adventures in science, technology, artificial intelligence and language design.
An Introduction to Non-Classical Logic
Graham Priest - 2001
Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
A First Course in Abstract Algebra
John B. Fraleigh - 1967
Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.
Math for Mystics: From the Fibonacci Sequence to Luna's Labyrinth to the Golden Section and Other Secrets of Sacred Geometry
Renna Shesso - 2007
Whether you were the king's court astrologer or a farmer marking the best time for planting, timekeeping and numbers really mattered. Mistake a numerical pattern of petals and you could be poisoned. Lose the rhythm of a sacred dance or the meter of a ritually told story and the intricately woven threads that hold life together were spoiled. Ignore the celestial clock of equinoxes and solstices, and you'd risk being caught short of food for the winter. Shesso's friendly tone and clear grasp of the information make the math "go down easy" in this marvelous book.BONUS: This book has over 100 illustrations! Click on the Google Preview link to get a glimpse.Excerpt from Math for Mystics: “It’s our collective malaise: Post-Traumatic Math Disorder.“Yet despite how we personally feel about mathematics, our distant ancestors willingly used numbers as pathways into the great patterns of Nature, avenues to understanding the Universe and their own place in it. Many ancient cultures had specific gods and goddesses they credited with inventing mathematical skills. With the aid of divine inspiration and assistance, humans nourished this numerical invention, continually pushing their skills and seeking greater clarity of expression. “Our starting point may seem like a Zero. But for now, before looking at numbers and math, let’s simply see it as a circle. No matter what our spiritual practice, we each live within the circle of creation, each within the circle—the cohesiveness—of our own form...” From John Michael Greer, Grand Archdruid, Ancient Order of Druids in America and author of The Druidry Handbook:“As thoughtful as it is readable, Renna Shesso’s Math for Mystics is the book I wish I had when I first started trying to make sense of the mathematics that underlie so much of modern magic and traditional occult lore. Not the least of its virtues is the way it makes magical number theory accessible even to those who think they don’t like or can’t handle math. It provides a first-rate introduction to a fairly neglected branch of magical lore.”
Partial Differential Equations for Scientists and Engineers
Stanley J. Farlow - 1982
Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.