Book picks similar to
Deep Learning for Natural Language Processing: Develop Deep Learning Models for your Natural Language Problems by Jason Brownlee
deep-learning
computer-science
data-science
machine-learning
Dive Into Python 3
Mark Pilgrim - 2009
As in the original book, Dive Into Python, each chapter starts with a real, complete code sample, proceeds to pick it apart and explain the pieces, and then puts it all back together in a summary at the end.This book includes:Example programs completely rewritten to illustrate powerful new concepts now available in Python 3: sets, iterators, generators, closures, comprehensions, and much more A detailed case study of porting a major library from Python 2 to Python 3 A comprehensive appendix of all the syntactic and semantic changes in Python 3 This is the perfect resource for you if you need to port applications to Python 3, or if you like to jump into languages fast and get going right away.
Introduction to Algorithms
Thomas H. Cormen - 1989
Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
How to Count (Programming for Mere Mortals, #1)
Steven Frank - 2011
unsigned numbers- Floating point and fixed point arithmeticThis short, easily understood book will quickly get you thinking like a programmer.
Big Data in Practice: How 45 Successful Companies Used Big Data Analytics to Deliver Extraordinary Results
Bernard Marr - 2016
Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter
Numsense! Data Science for the Layman: No Math Added
Annalyn Ng - 2017
Sold in over 85 countries and translated into more than 5 languages.---------------Want to get started on data science?Our promise: no math added.This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations and visuals.Popular concepts covered include:- A/B Testing- Anomaly Detection- Association Rules- Clustering- Decision Trees and Random Forests- Regression Analysis- Social Network Analysis- Neural NetworksFeatures:- Intuitive explanations and visuals- Real-world applications to illustrate each algorithm- Point summaries at the end of each chapter- Reference sheets comparing the pros and cons of algorithms- Glossary list of commonly-used termsWith this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.
Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors
Python Algorithms: Mastering Basic Algorithms in the Python Language
Magnus Lie Hetland - 2010
Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques.The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself.
Machine Learning
Tom M. Mitchell - 1986
Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.
Ebook: Design Thinking (Innovation Trends Series)
BBVA Innovation Center - 2015
In this issue you will find out all there is to be known about Design Thinking, the different and creative approach to businesses everyday challenges.
Grumby
Andy Kessler - 2010
In this comic novel a band of hacker-geeks load state-of-the-art artificial intelligence, including working eyes, ears, spy software, and a smart mouth, into a bunch of old Furby dolls, re-christened Grumbies, network them together, sell millions, become rich and famous and make enemies/allies of Mossad, the CIA, Google, Microsoft, IRS, Goldman Sachs, the guys from Google, and Steve Jobs.
HBR's 10 Must Reads on AI, Analytics, and the New Machine Age (with bonus article "Why Every Company Needs an Augmented Reality Strategy" by Michael E. Porter and James E. Heppelmann)
Harvard Business Review - 2018
Is your company ready?If you read nothing else on how intelligent machines are revolutionizing business, read these 10 articles. We've combed through hundreds of Harvard Business Review articles and selected the most important ones to help you understand how these technologies work together, how to adopt them, and why your strategy can't ignore them.
In this book you'll learn how:
Data science, driven by artificial intelligence and machine learning, is yielding unprecedented business insights
Blockchain has the potential to restructure the economy
Drones and driverless vehicles are becoming essential tools
3-D printing is making new business models possible
Augmented reality is transforming retail and manufacturing
Smart speakers are redefining the rules of marketing
Humans and machines are working together to reach new levels of productivity
This collection of articles includes "Artificial Intelligence for the Real World," by Thomas H. Davenport and Rajeev Ronanki; "Stitch Fix's CEO on Selling Personal Style to the Mass Market," by Katrina Lake; "Algorithms Need Managers, Too," by Michael Luca, Jon Kleinberg, and Sendhil Mullainathan; "Marketing in the Age of Alexa," by Niraj Dawar; "Why Every Organization Needs an Augmented Reality Strategy," by Michael E. Porter and James E. Heppelmann; "Drones Go to Work," by Chris Anderson; "The Truth About Blockchain," by Marco Iansiti and Karim R. Lakhani; "The 3-D Printing Playbook," by Richard A. D’Aveni; "Collaborative Intelligence: Humans and AI Are Joining Forces," by H. James Wilson and Paul R. Daugherty; "When Your Boss Wears Metal Pants," by Walter Frick; and "Managing Our Hub Economy," by Marco Iansiti and Karim R. Lakhani.
The Language of SQL
Larry Rockoff - 2010
For SQL beginners, it's more important for a book to focus on general concepts and offer clear explanations and examples of what the various statements can accomplish. This is that beginner book. A number of features make The LANGUAGE OF SQL unique among introductory SQL books. First, you will not be required to download software or sit with a computer as you read the text. The intent of this book is to provide examples of SQL usage that can be understood simply by reading them. Second, topics are organized in an intuitive and logical sequence. SQL keywords are introduced one at a time, allowing you to build on your prior understanding as you encounter new words and concepts. Finally, this book covers the syntax of three widely used databases: Microsoft SQL Server, MySQL, and Oracle, with special "Database Differences" boxes that will show you any differences in the syntax among those three databases, as well as instructions on how to obtain and install free versions of the databases. This is the only book you'll need to gain a working knowledge of SQL and relational databases.
Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites
Matthew A. Russell - 2011
You’ll learn how to combine social web data, analysis techniques, and visualization to find what you’ve been looking for in the social haystack—as well as useful information you didn’t know existed.Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools.Get a straightforward synopsis of the social web landscapeUse adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, LinkedIn, and Google+Learn how to employ easy-to-use Python tools to slice and dice the data you collectExplore social connections in microformats with the XHTML Friends NetworkApply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detectionBuild interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits"A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google
Probabilistic Graphical Models: Principles and Techniques
Daphne Koller - 2009
The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.