Book picks similar to
What Einstein Got Wrong by Dan Hooper


science
nonfiction
the-great-courses
physics

Science and Religion


Lawrence M. Principe - 2006
    Principe on the relation between science and religion from early times to the present.Two crucial forces, science and religion, helped shape Western civilization and continue to interact in our daily lives. What is the nature of their relationship? When do they conflict, and how do they influence each other in pursuit of knowledge and truth? Contrary to prevailing notions that they must perpetually clash, science and theology have actually been partners in an age-old adventure. This course covers both the historical sweep and philosophical flashpoints of this epic interaction.6 audio discs (1 hour each); 68-page course guidebook which includes professor biography, statement of course scope, lecture outlines and notes, a timeline, glossary, biographical notes, and bibliography.Lecture 1. Science and religionLecture 2. The warfare thesisLecture 3. Faith and reason: Scripture and natureLecture 4. God and nature: Miracles and demonsLecture 5. Church, Copernicus, and GalileoLecture 6. Galileo's trial. Lecture 7. God the watchmakerLecture 8. Natural theology and arguments from designLecture 9. Geology, cosmology, and Biblical chronologyLecture 10. Darwin and responses to evolutionLecture 11. Fundamentalism and creationismLecture 12. Past, present, and future

How It Began: A Time-Traveler's Guide to the Universe


Chris Impey - 2012
    Because it takes time for light to travel, we see more and more distant regions of the universe as they were in the successively greater past. Impey uses this concept—"look-back time"—to take us on an intergalactic tour that is simultaneously out in space and back in time. Performing a type of cosmic archaeology, Impey brilliantly describes the astronomical clues that scientists have used to solve fascinating mysteries about the origins and development of our universe.The milestones on this journey range from the nearby to the remote: we travel from the Moon, Jupiter, and the black hole at the heart of our galaxy all the way to the first star, the first ray of light, and even the strange, roiling conditions of the infant universe, an intense and volatile environment in which matter was created from pure energy. Impey gives us breathtaking visual descriptions and also explains what each landmark can reveal about the universe and its history. His lucid, wonderfully engaging scientific discussions bring us to the brink of modern cosmology and physics, illuminating such mind-bending concepts as invisible dimensions, timelessness, and multiple universes.A dynamic and unforgettable portrait of the cosmos, How It Began will reward its readers with a deeper understanding of the universe we inhabit as well as a renewed sense of wonder at its beauty and mystery.

Philosophy of Science


Jeffrey L. Kasser - 2006
    Kasser launches an ambitious and exciting inquiry into what makes science science, using the tools of philosophy to ask: * Why is science so successful? * Is there such a thing as the scientific method? * How do we distinguish science from pseudoscience? * Is science rational, cumulative, and progressive? Focusing his investigation on the vigorous debate over the nature of science that unfolded during the past 100 years, Professor Kasser covers important philosophers such as Karl Popper, W. V. Quine, Thomas Kuhn, Paul Feyerabend, Imre Lakatos, Carl Hempel, Nelson Goodman, and Bas van Fraassen.All of these thinkers responded in one way or another to logical positivism, the dominant movement influencing the philosophy of science during the first half of the 20 th century. Logical positivism attempted to ground science exclusively in what could be known through direct experience and logic.It sounds reasonable, but logical positivism proved to be riddled with serious problems, and its eventual demise is an object lesson in how truly difficult it is—perhaps impossible—to secure the logical foundations of a subject that seems so unassailably logical: science.

The Joy of Science


Robert M. Hazen - 2001
    It ranges from the study of the universe itself to the smallest particles of matter contained within it - and everything in between. It explores everything from the big bang to theories about the end of the universe. If you want to better understand our physical world, as most of us do, gaining a basic understanding of science itself is profoundly important - yet many are intimidated by the breathtaking scope of such an endeavor. Now an award-winning science teacher has taken out the intimidation, harnessing that breathtaking scope into a series of 60 exciting, comprehensive, and accessible lectures that let you explore and understand the wealth of ideas, discoveries, and principles in all of the physical and biological sciences. You learn that understanding science comes from understanding not only its component disciplines - each of which has its own theories, pioneers, problems, and fundamental questions - but of knowing how these disciplines work with one another to create an entire mosaic of human knowledge. The lectures have been crafted to make those relationships crystal-clear, with an integrated approach that takes you through all of the major disciplines that fall under the umbrella of "science," including physics, chemistry, Earth science, geophysics, and biology. Each lecture covers one of the 60 fundamental principles of the scientific world - offering you new knowledge and insight into topics such as the scientific method, gravitation, atoms, the big bang, plate tectonics, volcanoes, proteins, ecosystems, and electricity.

The Amazing Story of Quantum Mechanics: A Math-Free Exploration of the Science that Made Our World


James Kakalios - 2010
    Using illustrations and examples from science fiction pulp magazines and comic books, The Amazing Story of Quantum Mechanics explains the fundamental principles of quantum mechanics that underlie the world we live in.Watch a Video

The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics


Leonard Susskind - 2008
    Most scientists didn't recognize the import of Hawking's claims, but Leonard Susskind and Gerard t'Hooft realized the threat, and responded with a counterattack that changed the course of physics.The Black Hole War is the thrilling story of their united effort to reconcile Hawking's revolutionary theories of black holes with their own sense of reality -- effort that would eventually result in Hawking admitting he was wrong, paying up, and Susskind and t'Hooft realizing that our world is a hologram projected from the outer boundaries of space.A brilliant book about modern physics, quantum mechanics, the fate of stars and the deep mysteries of black holes, Leonard Susskind's account of the Black Hole War is mind-bending and exhilarating reading.

The Canon: A Whirligig Tour of the Beautiful Basics of Science


Natalie Angier - 2007
    She draws on conversations with hundreds of the world's top scientists and on her own work as a Pulitzer Prize-winning writer for the New York Times to create a thoroughly entertaining guide to scientific literacy. Angier's gifts are on full display in The Canon, an ebullient celebration of science that stands to become a classic. The Canon is vital reading for anyone who wants to understand the great issues of our time -- from stem cells and bird flu to evolution and global warming. And it's for every parent who has ever panicked when a child asked how the earth was formed or what electricity is. Angier's sparkling prose and memorable metaphors bring the science to life, reigniting our own childhood delight in discovering how the world works. "Of course you should know about science," writes Angier, "for the same reason Dr. Seuss counsels his readers to sing with a Ying or play Ring the Gack: These things are fun and fun is good." The Canon is a joyride through the major scientific disciplines: physics, chemistry, biology, geology, and astronomy. Along the way, we learn what is actually happening when our ice cream melts or our coffee gets cold, what our liver cells do when we eat a caramel, why the horse is an example of evolution at work, and how we're all really made of stardust. It's Lewis Carroll meets Lewis Thomas -- a book that will enrapture, inspire, and enlighten.

The Perfect Theory: A Century of Geniuses and the Battle over General Relativity


Pedro G. Ferreira - 2014
    Their work has uncovered a number of the universe’s more surprising secrets, and many believe further wonders remain hidden within the theory’s tangle of equations, waiting to be exposed. In this sweeping narrative of science and culture, astrophysicist Pedro Ferreira brings general relativity to life through the story of the brilliant physicists, mathematicians, and astronomers who have taken up its challenge. For these scientists, the theory has been both a treasure trove and an enigma, fueling a century of intellectual struggle and triumph.. Einstein’s theory, which explains the relationships among gravity, space, and time, is possibly the most perfect intellectual achievement of modern physics, yet studying it has always been a controversial endeavor. Relativists were the target of persecution in Hitler’s Germany, hounded in Stalin’s Russia, and disdained in 1950s America. Even today, PhD students are warned that specializing in general relativity will make them unemployable. Despite these pitfalls, general relativity has flourished, delivering key insights into our understanding of the origin of time and the evolution of all the stars and galaxies in the cosmos. Its adherents have revealed what lies at the farthest reaches of the universe, shed light on the smallest scales of existence, and explained how the fabric of reality emerges. Dark matter, dark energy, black holes, and string theory are all progeny of Einstein’s theory. We are in the midst of a momentous transformation in modern physics. As scientists look farther and more clearly into space than ever before, The Perfect Theory reveals the greater relevance of general relativity, showing us where it started, where it has led, and where it can still take us.

The Accidental Universe: The World You Thought You Knew


Alan Lightman - 2013
    He looks at the difficult dialogue between science and religion; the conflict between our human desire for permanence and the impermanence of nature; the possibility that our universe is simply an accident; the manner in which modern technology has separated us from direct experience of the world; and our resistance to the view that our bodies and minds can be explained by scientific logic and laws. And behind all of these considerations is the suggestion—at once haunting and exhilarating—that what we see and understand of the world is only a tiny piece of the extraordinary, perhaps unfathomable whole.

Science Wars: What Scientists Know and How They Know It


Steven L. Goldman - 2006
    (B) Scientific knowledge is always provisional and tells us nothing that is universal, necessary, or certain about the world. Welcome to the science wars—a long-running battle over the status of scientific knowledge that began in ancient Greece, raged furiously among scientists, social scientists, and humanists during the 1990s, and has re-emerged in today's conflict between science and religion over issues such as evolution.Professor Steven L. Goldman, whose Teaching Company course on Science in the 20th Century was praised by customers as "a scholarly achievement of the highest order" and "excellent in every way," leads you on a quest for the nature of scientific reasoning in this intellectually pathbreaking lecture series, Science Wars: What Scientists Know and How They Know It.Those who have taken Professor Goldman's previous course, which is an intensive survey of the revolution in scientific knowledge from 1900 to 2000, may have wondered: if what counts as scientific knowledge can transform so dramatically within only 100 years, what exactly is scientific knowledge? Science Wars addresses this surprisingly difficult question.Five Centuries of the Science WarsIn 24 half-hour lectures, Science Wars explores the history of competing conceptions of scientific knowledge and their implications for science and society from the onset of the Scientific Revolution in the 1600s to the present. It may seem that the accelerating pace of discoveries, inventions, and unexpected insights into nature during this period guarantees the secure foundations of scientific inquiry, but that is far from true. Consider these cases:The scientific method: In the 1600s the English philosopher Francis Bacon defined the scientific method in its classic form: the use of inductive reasoning to draw conclusions from an exhaustive body of facts. But "no scientist has ever been a strict Baconian," says Professor Goldman. "If you followed that, you would get nowhere."A "heated" debate: Around 1800 the dispute over the nature of heat was resolved in favor of the theory that heat is motion and not a substance given off during burning. But then the French mathematical physicist Joseph Fourier wrote a set of equations that accurately described how heat behaves regardless of what it "really" is, which, Fourier contended, was not a scientific question at all.Paradigm shifts: The publication in 1962 of Thomas Kuhn's The Structure of Scientific Revolutions precipitated a radical change in attitudes toward scientific knowledge, prompted by Kuhn's insight that science is not an entirely rational enterprise, and that its well-established theories (or paradigms) are overturned in a revolutionary, nonlogical process.Postmodern putdown: The postmodern attack on science as a privileged mode of inquiry made some headway in the late 20th century. But the credibility of the movement wilted in 1996, when a postmodern journal unwittingly published a spoof by physicist Alan Sokal, purporting to prove that physical theory was socially constructed. Sokal then exposed his piece as a parody.In the penultimate lecture of the course, Professor Goldman considers intelligent design—the argument that evolution can't account for the immense complexity of life and that a master designer must be at work. He approaches this topical debate by asking: What are the minimum criteria that define a hypothesis as scientific, and does intelligent design qualify? Having already covered five centuries of the science wars in the previous lectures, you will analyze this controversy with a set of tools that allows you to see the issues in a sharp, new light.What Is Reality?"Fasten your seatbelts," says Professor Goldman at the outset of Lecture 21—an advisory that applies equally to the whole course, which covers an astonishing array of ideas and thinkers. Throughout, Professor Goldman never loses his narrative thread, which begins 2,400 years ago with Plato's allegorical battle between "the gods" and "the earth giants"—between those for whom knowledge is universal, necessary, and certain; and those for whom it cannot be so and is based wholly on experience.The problem of what constitutes scientific knowledge can be illustrated with one of the most famous and widely accepted scientific theories of all time, Nicolaus Copernicus's heliostatic (stationary sun) theory of the solar system, which has undergone continual change since it was first proposed in 1543: Copernicus called for the planets to move in uniform circular motion around the sun, slightly displaced from the center. Using observations by Tycho Brahe, Johannes Kepler revised the Copernican model, discarding the ancient dogma of circular motion, which did not fit the data. Instead, he guessed that the planets in fact move in elliptical orbits. In his influential work endorsing the Copernican theory, Galileo ignored Kepler's corrections and opted for circular motion. Notoriously, the Catholic Church condemned Galileo for heresy. But the church was actually correct that he had no basis for claiming the heliocentric theory was true, rather than simply an interpretation of experience. Galileo's picture of space was superseded by Newton's and later by Einstein's, which also will doubtless be revised. Even something as basic as the elliptical motion of the planets is a vast oversimplification. There are no closed curves in space, since the solar system is moving around the center of the galaxy; the galaxy is moving within the local cluster; and the local cluster is also moving. Although we still call the conventional picture of the solar system Copernican astronomy, there is effectively no resemblance between astronomy today and Copernicus's 1543 theory of the heavens. The same is also true of other theories, such as the atomic theory of matter. All scientific theories are in a state of ceaseless revision, which raises the question of what reality "really" is. As the contemporary philosopher of science Mary Hesse has pointed out, the lesson of the history of science seems to be that the theories we currently hold to be true are as likely to be overturned as the theories they replaced!Sharpen Your Understanding of What Science IsThe uncertainty about the status of scientific knowledge and about the objectivity of the scientific enterprise led to a broad assault on science in the late 20th century by sociologists, philosophers, and historians, many connected with the postmodern movement. The lectures covering this attack and the ensuing counterattack by scientists are some of the most thrilling in the course and involve a number of figures whom Professor Goldman knows personally.Of one of the firebrands in this conflict, the late Viennese philosopher of science Paul Feyerabend, Professor Goldman says, "I myself took a seminar with Feyerabend when he was teaching at Berkeley in the early 1960s. … Feyerabend was not really off the wall, although he was often depicted that way. … He too recognized, as everyone must, that after all, science does work and science is knowledge of a sort. It's just not the absolute knowledge that scientists and philosophers have historically claimed that it is."By the time you reach the end of this course, you will understand exactly what science is, and you will be enlightened about a fascinating problem that perhaps you didn't even know existed. "There have been a raft of popular books about what scientists know," says Professor Goldman, "but to the best of my knowledge, there is not a single one of these popular books that focuses centrally on the question of how scientists know what they know."This course serves as that book.Course Lecture Titles1. Knowledge and Truth Are Age-Old Problems 2. Competing Visions of the Scientific Method 3. Galileo, the Catholic Church, and Truth 4. Isaac Newtons Theory of the Universe 5. Science vs. Philosophy in the 17th Century 6. Locke, Hume, and the Path to Skepticism 7. Kant Restores Certainty 8. Science, Society, and the Age of Reason 9. Science Comes of Age in the 19th Century 10. Theories Need Not Explain 11. Knowledge as a Product of the Active Mind 12. Trading Reality for Experience 13. Scientific Truth in the Early 20th Century 14. Two New Theories of Scientific Knowledge 15. Einstein and Bohr Redefine Reality 16. Truth, Ideology, and Thought Collectives 17. Kuhn's Revolutionary Image of Science 18. Challenging Mainstream Science from Within 19. Objectivity Under Attack 20. Scientific Knowledge as Social Construct 21. New Definitions of Objectivity 22. Science Wars of the Late 20th Century 23. Intelligent Design and the Scope of Science 24. Truth, History, and Citizenship12 Audio CDs(24 lectures, 30 minutes/lecture)

Understanding the Secrets of Human Perception


Peter M. Vishton - 2011
    Nothing you experience would be possible without the intricate power of your senses. But how much about them do you really know?Your ability to sense and perceive the world around you is so richly detailed and accurate as to be miraculous. No tool in the entire universe of scientific exploration can come close to matching the ability of your brain to use information sensed by your eyes, ears, skin, tongue, and nose to produce a rich sensory experience in just milliseconds.In recent years, neurobiologists and other scientists have uncovered new insights into how your senses work and the amazingly complex and fascinating things they can do. And now you can share in what they've discovered-through this intriguing series of 24 lectures from an award-winning teacher.Knowing how your senses work and the ways they shape how you see, interact with, and understand your life will help you think more critically about everything you sense and perceive, strengthen your appreciation of the senses that make this possible, prepare you to be an active consumer of new scientific evidence on how our senses work, and much more.With Professor Vishton as your guide, you'll. consider each of your senses from multiple perspectives:Explore how your brain processes different sensory informationConsider how your senses work together and within the context of the environment around youdiscover how your senses connect you to the world and other people.Using both cutting-edge research and simple experiments, tests, and demonstrations to hone your understanding, he has created a world-class learning experience that will change the way you think about your senses.

The Passions: Philosophy and the Intelligence of Emotions


Robert C. Solomon - 2006
    Our emotions, according to a recent theory, are imbued with intelligence, and a person's emotional repertoire is not a mattter of fate but a matter of emotional integrity.Parts 1 and 2 in separate containers.12 audiocassettes (720 min.) : analog, stereo, Dolby-processed + 2 course guidebooks.Contents:Lecture 1. Emotions as engagements with the world.lecture 2. The wrath of Achilles.lecture 3. It's good to be afraid.lecture 4. Lessons of love: Plato's Symposium.lecture 5. We are not alone: compassion and empathy.lecture 6. Noble? Or deadly sin: pride and shame --lecture 7. Nasty: Iago's envy, Othello's jealousy --lecture 8. Nastier: resentment and vengeance --lecture 9. A death in the family: the logic of grief --lecture 10: James and the bear: emotions and feelings --lecture 11. Freud's catharsis: the hydraulic model --lecture 12. Are emotions "in" the mind? --lecture 13. How emotions are intelligent --lecture 14. Emotions as judgments --lecture 15. Beyond boohoo and hooray --lecture 16. Emotions are rational --lecture 17. Emotions and responsibility --lecture 18. Emotions in ethics --lecture 19. Emotions and the self --lecture 20. What is emotional experience? --lecture 21. Emotions across cultures: universals --lecture 22. Emotions across cultures: differences --lecture 23. Laughter and music --lecture 24. Happiness and spirituality.

The Greatest Story Ever Told—So Far: Why Are We Here?


Lawrence M. Krauss - 2017
    But more than this, there was gravity. After that, all hell broke loose… In A Universe from Nothing, Krauss revealed how our entire universe could arise from nothing. Now, he reveals what that something—reality—is. And, reality is not what we think or sense—it’s weird, wild, and counterintuitive; it’s hidden beneath everyday experience; and its inner workings seem even stranger than the idea that something can come from nothing. In a landmark, unprecedented work of scientific history, Krauss leads us to the furthest reaches of space and time, to scales so small they are invisible to microscopes, to the birth and rebirth of light, and into the natural forces that govern our existence. His unique blend of rigorous research and engaging storytelling invites us into the lives and minds of the remarkable, creative scientists who have helped to unravel the unexpected fabric of reality—with reason rather than superstition and dogma. Krauss has himself been an active participant in this effort, and he knows many of them well. The Greatest Story challenges us to re-envision ourselves and our place within the universe, as it appears that “God” does play dice with the universe. In the incisive style of his scintillating essays for The New Yorker, Krauss celebrates the greatest intellectual adventure ever undertaken—to understand why we are here in a universe where fact is stranger than fiction.

Quantum Physics for Beginners in 90 Minutes without Math: All the Major Ideas of Quantum Mechanics, from Quanta to Entanglement, in Simple Language


Modern Science - 2017
    This behavior is very much different from what we humans are used to dealing with in our everyday lives, so naturally this subject is quite hard to comprehend for many. We believed that the best way to introduce the subject reliably is to start at the beginning, presenting the observations, thoughts and conclusions of each of the world’s greatest physicists through their eyes, one at a time. In this way we hope that the reader may take an enjoyable journey through the strange truths of quantum theory and understand why the conclusions of these great minds are what they are. This book starts with the most general view of the world and gradually leads readers to those new, unbelievable but real facts about the very nature of our universe.

The Greek & Persian Wars


John R. Hale - 2008
    Lecture 1. The first encounter -- Lecture 2. Empire builders : the Persians -- Lecture 3. Intrepid voyagers : the Greeks -- Lecture 4. The Ionian revolt -- Lecture 5. From Mount Athos to Marathon -- Lecture 6. Xerxes prepares for war -- Lecture 7. The Athenians build a fleet -- Lecture 8. Heroes at the pass -- Lecture 9. Battle in the straits -- Lecture 10. The freedom fighters -- Lecture 11. Commemorating the great war -- Lecture 12. Campaigns of the Delian League --Part 2. Lecture 13. Launching a golden age -- Lecture 14. Herodotus invents history -- Lecture 15. Engineering the fall of Athens -- Lecture 16. Cyrus, Xenophon, and the ten thousand -- Lecture 17. The march to the sea -- Lecture 18. Strange bedfellows -- Lecture 19. The Panhellenic dream -- Lecture 20. The rise of Macedon -- Lecture 21. Father and son -- Lecture 22. Liberating the Greeks of Asia -- Lecture 23. Who is the great king? -- Lecture 24. When east met west.