Book picks similar to
What Einstein Got Wrong by Dan Hooper


science
nonfiction
physics
the-great-courses

Great Ideas of Classical Physics


Steven Pollock - 2006
    The Great Ideas of Classical Physics 2. Describing MotionA Break from Aristotle 3. Describing Ever More Complex Motion 4. Astronomy as a Bridge to Modern Physics 5. Isaac NewtonThe Dawn of Classical Physics 6. Newton QuantifiedForce and Acceleration 7. Newton and the Connections to Astronomy 8. Universal Gravitation 9. Newton's Third Law 10. Conservation of Momentum 11. Beyond NewtonWork and Energy 12. Power and the Newtonian Synthesis 13. Further DevelopmentsStatic Electricity 14. Electricity, Magnetism, and Force Fields 15. Electrical Currents and Voltage 16. The Origin of Electric and Magnetic Fields 17. Unification IMaxwell's Equations 18. Unification IIElectromagnetism and Light 19. Vibrations and Waves 20. Sound Waves and Light Waves 21. The Atomic Hypothesis 22. Energy in SystemsHeat and Thermodynamics 23. Heat and the Second Law of Thermodynamics 24. The Grand Picture of Classical Physics

The Inexplicable Universe: Unsolved Mysteries


Neil deGrasse Tyson - 2012
    And with the advent of modern science, great minds have turned to testing and experimentation rather than mere thought as a way of approaching and grappling with some of the universe's most pressing and vexing dilemmas. So what is our latest picture of some of the most inexplicable features of the universe? What still remains to be uncovered? What are some of the next avenues of exploration for today's chemists, physicists, biologists, and astronomers? Pondering the answers to these and other questions is a great way to appreciate the grandeur and complexity of the world around you, better understand and discuss news and developments in science, and spark further interest in some of science's many exciting areas of study. "We know a lot about the universe. But there's even more that we don't know,"says astrophysicist and Professor Neil deGrasse Tyson, director of the Hayden Planetarium, an award-winning lecturer, and one of the world's foremost experts on the secrets of the universe. And his course The Inexplicable Universe: Unsolved Mysteries is the perfect gateway into this mind-bending and eye-opening subject. Each of these six self-contained lectures is a marvelous journey to the frontiers of the known (and unknown) universe and introduces you to tantalizing questions being addressed by the world's top scientists. Undeniably engaging and fascinating, this lecture series is a wonderful entrée to scientific pursuits that lie at the very heart of the history and nature of our universe. An Informed Scientific Conversation Central to The Inexplicable Universe is the way it takes you deep into hidden layers of the universe in a manner that is extremely accessible. Rather than a stern lecture given before a podium complete with confusing mathematics, Professor Tyson's lectures have the feel of an informed conversation that manages to be both thorough and easy to grasp. With each of the inexplicable mysteries he lays bare for you, Professor Tyson introduces you to the history behind it, lays out the science that has helped us grasp it, explains what researchers have discovered to date, and reveals what we have yet to discover. And while the topics explore subjects in everything from quantum mechanics to cosmology to string theory, you'll never feel overwhelmed by what you're learning. In fact, you're more likely to find yourself intrigued by just how much we know-and curious about what the near future will possibly reveal. Explore Fascinating Territory So what territory will you chart in this course? Here are some of the inexplicable ideas you'll investigate in these lectures. Neutrinos: Discovered in 1956, these fast-moving, ghostlike particles are made in abundance in the sun's core. They hardly interact with matter; it takes a light-year's worth of lead (5.8 trillion miles) to stop a neutrino. Not only that, but 65 billion neutrinos pass through every centimeter of your body that's facing the sun every second of every day. String theory: This astounding theory offers the hope of unifying all the particles and forces of physics. In the past several decades since the dawn of string theory, it's been imagined that all the fundamental particles we see and measure are just the manifestation in our dimension of strings vibrating in higher dimensions and at different frequencies. Quantum foam: This idea posits that when the fabric of space and time is so tightly curved on itself, space-time is less a smooth curve and more like the froth on a latte. In this state of matter and energy, quantum fluctuations can spawn entire universes, each with slightly different laws of physics within them! In addition, you'll also get a peek at what it would be like to travel through a black hole, ponder the possibility that life on Earth originated in debris from Mars, probe the supposed existence of multiple universes, and even imagine the possible end of the universe itself. A One-on-One Chat with a Renowned Science Educator Professor Tyson is renowned throughout the scientific community and the media for his vast knowledge, his penetrating insights, and his amazing ability to make even the most intimidating areas of science accessible, engaging, and-most of all-enjoyable. He brings the same inviting tone and sharp intellect to The Inexplicable Universe as he does to his range of media appearances on popular television programs. Due to its unique subject matter The Inexplicable Universe takes a highly visual approach. Many of the fascinating subjects in the course, such as black holes, string theory, and multiple universes are best demonstrated visually and Professor Tyson's lectures feature expertly crafted computer animations, explanatory diagrams, high resolution photographs, and other instructive visual elements. In order to better explain to you some of the grand, intricate ideas being discussed, Professor Tyson personally interacts with many of these animations and graphics using greenscreen technology. Please note that, due to the highly visual nature of The Inexplicable Universe, the course does not come with a guidebook. We did not believe a simple book could adequately convey the information in the course, and rather than make a guidebook that did not do the course justice, we decided to not offer one. However, we believe that you will be very excited by how we produced this course and will find it to be an enriching and fulfilling experience in your educational journey.

The Search for Exoplanets: What Astronomers Know


Joshua N. Winn - 2015
    Thanks to advances in technology and clever new uses of existing data, now we know that planetary systems and possibly even a new Earth can be found throughout galaxies near and far.We are living during a new golden age of planetary discovery, with the prospect of finding many worlds like Earth. Most of the thousands of planets we've detected can't be imaged directly, but researchers are able to use subtle clues obtained in ingenious ways to assemble an astonishing picture of planetary systems far different from our own. We are in the midst of an astronomical revolution, comparable to the Copernican revolution that established our current view of the solar system - and we invite you to take part.Embark on this unrivaled adventure in 24 lectures by a veteran planet hunter. Designed for everyone from armchair explorers to serious skywatchers, The Search for Exoplanets follows the numerous twists and turns in the hunt for exoplanets - the false starts, the sudden breakthroughs, and the extraordinary discoveries. Explore systems containing super-Earths, mini-Neptunes, lava worlds, and even stranger worlds. You also get behind-the-scenes information on the techniques astronomers used to find evidence of planets at mind-boggling distances from our home base. Learn how astronomers determine how many planets are in a system as well as how large they are and the characteristics of their atmospheres. You will feel like Dr. Watson in the presence of Sherlock Holmes as Professor Winn extracts a wealth of information from a spectrum, a light graph, a diffraction pattern, and other subtle clues.©2015 The Teaching Company, LLC (P)2015 The Great Courses

The Modern Scholar: Astronomy I: Earth, Sky, and Planets


James B. Kaler - 2003
    By studying the physical astronomy of all the planets in the Solar System, we can attempt to understand their true nature. Ultimately, these lectures will bring us to a greater understanding of the Solar System's creation, which brings us again back to the beginning and what it means to us as we look outward from our rotating Earth.

Einstein's Relativity and the Quantum Revolution: Modern Physics for Non-Scientists


Richard Wolfson - 2000
    Relativity and quantum physics touch the very basis of physical reality, altering our commonsense notions of space and time, cause and effect. Both have reputations for complexity. But the basic ideas behind relativity and quantum physics are, in fact, simple and comprehensible by anyone. As Professor Wolfson points out, the essence of relativity can be summed up in a single sentence: The laws of physics are the same for all observers in uniform motion. The same goes for quantum theory, which is based on the principle that the "stuff " of the universe-matter and energy-is not infinitely divisible but comes in discrete chunks called "quanta." Profound ... Beautiful ... Relevant Why should you care about these landmark theories? Because relativity and quantum physics are not only profound and beautiful ideas in their own right, they are also the gateway to understanding many of the latest science stories in the media. These are the stories about time travel, string theory, black holes, space telescopes, particle accelerators, and other cutting-edge developments. Consider these ideas: Although Einstein's theory of general relativity dates from 1914, it has not been possible to test certain predictions until recently. The Hubble Space Telescope is providing some of the most striking confirmations of the theory, including certain evidence for the existence of black holes, objects that warp space and time so that not even light can escape. Also, the expansion of the universe predicted by the theory of general relativity is now a known rate. General relativity also predicts an even weirder phenomenon called "wormholes" that offer shortcuts to remote reaches of time and space. According to Einstein's theory of special relativity, two twins would age at different rates if one left on a high-speed journey to a distant star and then returned. This experiment has actually been done, not with twins, but with an atomic clock flown around the world. Another fascinating experiment confirming that time slows as speed increases comes from measuring muons at the top and bottom of mountains. A seemingly absurd consequence of quantum mechanics, called "quantum tunneling," makes it possible for objects to materialize through impenetrable barriers. Quantum tunneling happens all the time on the subatomic scale and plays an important role in electronic devices and the nuclear processes that keep the sun shining. Some predictions about the expansion of the universe were so odd that Einstein himself tried to rewrite the mathematics in order to eliminate them. When Hubble discovered the expansion of the universe, Einstein called the revisions the biggest mistake he had ever made. An intriguing thought experiment called "Schrödinger's cat" suggests that a cat in an enclosed box is simultaneously alive and dead under experimental conditions involving quantum phenomena. From Aristotle to the Theory of Everything Professor Wolfson begins with a brief overview of theories of physical reality starting with Aristotle and culminating in Newtonian or "classical" physics. Then he outlines the logic that led to Einstein's theory of special relativity, and the simple yet far-reaching insight on which it rests. With that insight in mind, you move on to consider Einstein's theory of general relativity and its interpretation of gravitation in terms of the curvature of space and time. Professor Wolfson then shows how inquiry into matter at the atomic and subatomic scales led to quandaries that are resolved-or at least clarified-by quantum mechanics, a vision of physical reality so at odds with our experience that it nearly defies language. Bringing relativity and quantum mechanics into the same picture leads to hypotheses about the origin, development, and possible futures of the entire universe, and the possibility that physics can produce a "theory of everything" to account for all aspects of the physical world. Fascinating Incidents and Ideas Along the way, you'll explore these fascinating incidents and ideas: In the 1880s, Albert Michelson and Edward Morley conducted an experiment to determine the motion of the Earth relative to the ether, which was a supposedly imponderable substance pervading all of space. You'll learn about their experiment, its shocking result, and the resulting theoretical crisis. In 1905, a young Swiss patent clerk named Albert Einstein resolved the crisis by discarding the ether concept and asserting the principle of relativity-that the laws of physics are the same for all observers in uniform motion. Relativity implies that the time order of events can be different in different reference frames. Does this wreak havoc with cause and effect? And why does Einstein assert that nothing can go faster than light? Shortly after publishing his 1905 paper on special relativity, Einstein realized that his theory required a fundamental equivalence between mass and energy, which he expressed in the equation E=mc2. Among other things, this famous formula means that the energy contained in a single raisin could power a large city for a whole day. Historically, the path to general relativity followed Einstein's attempt to incorporate gravity into relativity theory, which led to his understanding of gravity not as a force, but as a local manifestation of geometry in curved spacetime. Quantum theory places severe limits on our ability to observe nature at the atomic scale because it implies that the act of observation necessarily disturbs the thing that is being observed. The result is Werner Heisenberg's famous "uncertainty principle." Are quarks, the particles that make up protons and neutrons, the truly elementary particles? What are the three fundamental forces that physicists identify as holding particles together? Could they be manifestations of a single, universal force? A Teaching Legend On his own Middlebury College campus, Professor Wolfson is a teaching legend with an infectious enthusiasm for his subject and a knack for conveying difficult concepts in a way that fosters true understanding. He is the author of an introductory text on physics, a contributor to the esteemed publication Scientific American, and a specialist in interpreting science for the nonspecialist. In this course, Professor Wolfson uses extensive illustrations and diagrams to help bring to life the theories and concepts that he discusses. Thus we highly recommend our DVD version, although Professor Wolfson is mindful of our audio students and carefully describes visual materials throughout his lectures. Professor Richard Wolfson on the Second Edition of Einstein's Relativity: "The first version of this course was produced in 1995. In this new version, I have chosen to spend more time on the philosophical interpretation of quantum physics, and on recent experiments relevant to that interpretation. I have also added a final lecture on the theory of everything and its possible implementation through string theory. The graphic presentations for the DVD version have also been extensively revised and enhanced. But the goal remains the same: to present the key ideas of modern physics in a way that makes them clear to the interested layperson."

Exploring Metaphysics


David Kyle Johnson - 2014
    The truth is, while metaphysics is among the oldest strands of philosophical thought—an inquiry into the very nature ofreality—metaphysics is also on the cutting edge of today’s scientific discoveries.

Big History: The Big Bang, Life On Earth, And The Rise Of Humanity


David Christian - 2008
    David Christian, professor of history at San Diego State University, surveys the past at all possible scales, from conventional history, to the much larger scales of biology and geology, to the universal scales of cosmology.

The Hunt for Vulcan: ...And How Albert Einstein Destroyed a Planet, Discovered Relativity, and Deciphered the Universe


Thomas Levenson - 2015
    November 2015 is the 100th anniversary of Einstein’s discovery of the General Theory of Relativity.Levenson, head of MIT’s Science Writing Program, tells the captivating, unusual, and nearly-forgotten backstory behind Einstein’s invention of the Theory of Relativity, which completely changed the course of science forever. For over 50 years before Einstein developed his theory, the world’s top astronomers spent countless hours and energy searching for a planet, which came to be named Vulcan, that had to exist, it was thought, given Isaac Newton’s theories of gravity. Indeed, in the two centuries since Newton’s death, his theory had essentially become accepted as fact. It took Einstein’s genius to realize the mystery of the missing planet wasn’t a problem of measurements or math but of Newton’s theory of gravity itself. Einstein’s Theory of Relativity proved that Vulcan did not and could not exist, and that the decades-long search for it had merely been a quirk of operating under the wrong set of assumptions about the universe. Thomas Levenson tells this unique story, one of the strangest episodes in the history of science, with elegant simplicity, fast-paced drama, and lively characters sure to capture the attention of a wide group of readers.

Light Falls: Space, Time, and an Obsession of Einstein


Brian Greene - 2016
    Featuring an original score by composer Jeff Beal (House of Cards, Pollock), Einstein’s electrifying journey toward his greatest achievement is brought vividly to life.The theatrical version of Light Falls was first performed at the World Science Festival in New York City.Full list of narrators includes Graeme Malcolm.©2015 Brian Greene (P)2016 Audible, Inc.

The Higgs Boson and Beyond


Sean Carroll - 2015
    The hunt for the Higgs was the subject of wide media attention due to the cost of the project, the complexity of the experiment, and the importance of its result. And, when it was announced with great fanfare in 2012 that physicists has succeeded in creating and identifying this all-important new particle, the discovery was celebrated around the world.And yet, virtually no one who read that news could tell you what, exactly, the Higgs boson was, and why its discovery was so important that we had to spend 10 billion dollars and build the single largest and most complex device in the history of mankind in order to find it. When you understand the details, this story ranks as one of the most thrilling in the history of modern science.Award-winning theoretical physicist Sean Carroll, a brilliant researcher as well as a gifted speaker who excels in explaining scientific concepts to the public, is perfectly positioned to tell this story. In this 12-lecture masterpiece of scientific reporting, you'll learn everything you need to know to fully grasp the significance of this discovery, including the basics of quantum mechanics; the four forces that comprise the Standard Model of particle physics; how these forces are transmitted by fields and particles; and the importance of symmetry in physics.You also get an in-depth view of the Large Hadron Collider - the largest machine ever built, and the device responsible for finally revealing the concept of the Higgs boson as reality. By the end, you'll understand how the Higgs boson verifies the final piece in the Standard Model of particle physics, and how its discovery validates and deepens our understanding of the universe.

The Particles of the Universe


Jeff Yee - 2012
    Everything around us, including matter, is energy. A deep look into the mysteries of the subatomic world – the particles that make up the atom – provides answers to basic questions about how the universe works. To solve the future of mankind’s energy needs we need to understand the basic building blocks of the universe, including the atom and its parts. By exploring the subatomic world we’ll find more answers to our questions about time, forces like gravity and the matter that surrounds us. More importantly, we’ll find new ways to tap into the energy that exists around us to power our growing needs. In a new branch of particle physics, where tiny particles are thought of as energy waves, we find new answers that may help us in our quest to find alternative energy sources.

Hidden In Plain Sight 2: The Equation of the Universe


Andrew H. Thomas - 2013
    Enjoy a thrilling intergalactic tour as Andrew Thomas redefines the force of gravity and introduces a brave new view of the universe!

Spooky Action at a Distance: The Phenomenon That Reimagines Space and Time—and What It Means for Black Holes, the Big Bang, and Theories of Everything


George Musser - 2015
    Space is the venue of physics; it's where things exist, where they move and take shape. Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time: nonlocality-the ability of two particles to act in harmony no matter how far apart they may be. It appears to be almost magical. Einstein grappled with this oddity and couldn't come to terms with it, describing it as "spooky action at a distance." More recently, the mystery has deepened as other forms of nonlocality have been uncovered. This strange occurrence, which has direct connections to black holes, particle collisions, and even the workings of gravity, holds the potential to undermine our most basic understandings of physical reality. If space isn't what we thought it was, then what is it? In Spooky Action at a Distance, George Musser sets out to answer that question, offering a provocative exploration of nonlocality and a celebration of the scientists who are trying to explain it. Musser guides us on an epic journey into the lives of experimental physicists observing particles acting in tandem, astronomers finding galaxies that look statistically identical, and cosmologists hoping to unravel the paradoxes surrounding the big bang. He traces the often contentious debates over nonlocality through major discoveries and disruptions of the twentieth century and shows how scientists faced with the same undisputed experimental evidence develop wildly different explanations for that evidence. Their conclusions challenge our understanding of not only space and time but also the origins of the universe-and they suggest a new grand unified theory of physics. Delightfully readable, Spooky Action at a Distance is a mind-bending voyage to the frontiers of modern physics that will change the way we think about reality.Long-listed for the 2016 PEN/E. O. Wilson Literary Science Writing Award“An important book that provides insight into key new developments in our understanding of the nature of space, time and the universe. It will repay careful study.” —John Gribbin, The Wall Street Journal “An endlessly surprising foray into the current mother of physics' many knotty mysteries, the solving of which may unveil the weirdness of quantum particles, black holes, and the essential unity of nature.” —Kirkus Reviews (starred review)

Infinite Potential: What Quantum Physics Reveals About How We Should Live


Lothar Schäfer - 2013
    With his own research as well as that of some of the most distinguished scientists of our time, Schäfer moves us from a reality of Darwinian competition to cooperation, a meaningless universe to a meaningful one, and a disconnected, isolated existence to an interconnected one. In so doing, he shows us that our potential is infinite and calls us to live in accordance with the order of the universe, creating a society based on the cosmic principle of connection, emphasizing cooperation and community.

Frequently Asked Questions about the Universe


Jorge Cham - 2021
    --Carlo Rovelli, author of Seven Brief Lessons on Physics and Helgoland You've got questions: about space, time, gravity, and the odds of meeting your older self inside a wormhole. All the answers you need are right here.As a species, we may not agree on much, but one thing brings us all together: a need to know. We all wonder, and deep down we all have the same big questions. Why can't I travel back in time? Where did the universe come from? What's inside a black hole? Can I rearrange the particles in my cat and turn it into a dog?Researcher-turned-cartoonist Jorge Cham and physics professor Daniel Whiteson are experts at explaining science in ways we can all understand, in their books and on their popular podcast, Daniel and Jorge Explain the Universe. With their signature blend of humor and oh-now-I-get-it clarity, Jorge and Daniel offer short, accessible, and lighthearted answers to some of the most common, most outrageous, and most profound questions about the universe they've received.This witty, entertaining, and fully illustrated book is an essential troubleshooting guide for the perplexing aspects of reality, big and small, from the invisible particles that make up your body to the identical version of you currently reading this exact sentence in the corner of some other galaxy. If the universe came with an FAQ, this would be it.