Horizons: Exploring the Universe


Michael A. Seeds - 1981
    To achieve this goal, they focuses on two central questions: "What Are We?" which highlights your place as a planet dweller in an evolving universe, guiding you to better understand where we came from and how we formed; and "How Do We Know?" which provides insights into how the process of science can teach us more about what we are.

The ABC of Relativity


Bertrand Russell - 1925
    Ask them the meaning of 'relativity' and few of them will be able to tell you what it is.The basic principles of relativity have not changed since Russell first published his lucid guide for the general reader. The ABC of Relativity is Bertrand Russell's most brilliant work of scientific popularisation. With marvellous lucidity he steers the reader who has no knowledge of maths or physics through the subtleties of Einstein's thinking. In easy, assimilable steps, he explains the theories of special and general relativity and describes their practical application to, amongst much else, discoveries about gravitation and the invention of the hydrogen bomb.

Fearful Symmetry: The Search for Beauty in Modern Physics


A. Zee - 1986
    A. Zee, a distinguished physicist and skillful expositor, tells the exciting story of how today's theoretical physicists are following Einstein in their search for the beauty and simplicity of Nature. Animated by a sense of reverence and whimsy, the book describes the majestic sweep and accomplishments of twentieth-century physics. In the end, we stand in awe before the grand vision of modern physics--one of the greatest chapters in the intellectual history of humankind.

Physical Chemistry: A Molecular Approach


Donald A. McQuarrie - 1997
    It covers all relevant areas, including molecular spectroscopy, electronic structure computations, molecular beam methods and time-resolved measurements of chemical systems.

Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus


Michael Spivak - 1965
    The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.

Calculus


Gilbert Strang - 1991
    The author has a direct style. His book presents detailed and intensive explanations. Many diagrams and key examples are used to aid understanding, as well as the application of calculus to physics and engineering and economics. The text is well organized, and it covers single variable and multivariable calculus in depth. An instructor's manual and student guide are available online at http: //ocw.mit.edu/ans7870/resources/Strang/....

Principles of Human Anatomy


Gerard J. Tortora - 1977
    A host of carefully crafted pedagogical aids support both the succinctly written narrative as well as the outstanding illustration program. Clinical applications, popular with students, represent a variety of clinical perspectives and provide both relevance and motivation for students as they study. The ninth edition of the text continues to break new ground in a modern day anatomy textbook by offering students a glimpse into the fascinating history of how we have come to know what we do, opportunities to explore structure from diverse perspectives, and insights into the vital contributions that anatomical knowledge brings to the understanding of functions and diagnosis and treatment of disease.

Lectures on Quantum Mechanics


Paul A.M. Dirac - 1964
    The remaining lectures build on that idea, examining the possibility of building a relativistic quantum theory on curved surfaces or flat surfaces.

The Zoomable Universe: An Epic Tour Through Cosmic Scale, from Almost Everything to Nearly Nothing


Caleb Scharf - 2017
    Drawing on cutting-edge science, they begin at the limits of the observable universe, a scale spanning 10^27 meters--about 93 billion light-years. And they end in the subatomic realm, at 10^-35 meters, where the fabric of space-time itself confounds all known rules of physics. In between are galaxies, stars and planets, oceans and continents, plants and animals, microorganisms, atoms, and much, much more. Stops along the way--all enlivened by Scharf's sparkling prose and his original insights into the nature of our universe--include the brilliant core of the Milky Way, the surface of a rogue planet, the back of an elephant, and a sea of jostling quarks.The Zoomable Universe is packed with more than 100 original illustrations and infographics that will captivate readers of every age. It is a whimsical celebration of discovery, a testament to our astounding ability to see beyond our own vantage point and chart a course from the farthest reaches of the cosmos to its subatomic depths--in short, a must-have for the shelves of all explorers.

A Student's Guide to Maxwell's Equations


Daniel Fleisch - 2007
    In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.

Decoding the Universe: How the New Science of Information Is Explaining Everything in the Cosmos, from Our Brains to Black Holes


Charles Seife - 2006
    In Decoding the Universe, Charles Seife draws on his gift for making cutting-edge science accessible to explain how this new tool is deciphering everything from the purpose of our DNA to the parallel universes of our Byzantine cosmos. The result is an exhilarating adventure that deftly combines cryptology, physics, biology, and mathematics to cast light on the new understanding of the laws that govern life and the universe.

Strange New Worlds: The Search for Alien Planets and Life Beyond Our Solar System


Ray Jayawardhana - 2011
    Before the decade is out, telltale signs that they harbor life may be found. If they are, the ramifications for all areas of human thought and endeavor--from religion and philosophy to art and biology--will be breathtaking. In Strange New Worlds, renowned astronomer Ray Jayawardhana brings news from the front lines of the epic quest to find planets--and alien life--beyond our solar system.Only in the past fifteen years, after millennia of speculation, have astronomers begun to discover planets around other stars--hundreds in fact. But the hunt to find a true Earth-like world goes on. In this book, Jayawardhana vividly recounts the stories of the scientists and the remarkable breakthroughs that have ushered in this extraordinary age of exploration. He describes the latest findings--including his own--that are challenging our view of the cosmos and casting new light on the origins and evolution of planets and planetary systems. He reveals how technology is rapidly advancing to support direct observations of Jupiter-like gas giants and super-Earths--rocky planets with several times the mass of our own planet--and how astronomers use biomarkers to seek possible life on other worlds.Strange New Worlds provides an insider's look at the cutting-edge science of today's planet hunters, our prospects for discovering alien life, and the debates and controversies at the forefront of extrasolar-planet research.

Mathematical Methods for Physics and Engineering: A Comprehensive Guide


K.F. Riley - 1998
    As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. Further tabulations, of relevance in statistics and numerical integration, have been added. In this edition, half of the exercises are provided with hints and answers and, in a separate manual available to both students and their teachers, complete worked solutions. The remaining exercises have no hints, answers or worked solutions and can be used for unaided homework; full solutions are available to instructors on a password-protected web site, www.cambridge.org/9780521679718.

Cats’ Paws and Catapults: Mechanical Worlds of Nature and People


Steven Vogel - 1998
    Why, then, do their designs diverge so sharply? Humans, for instance, love right angles, while nature's angles are rarely right and usually rounded. Our technology goes around on wheels—and on rotating pulleys, gears, shafts, and cams—yet in nature only the tiny propellers of bacteria spin as true wheels. Our hinges turn because hard parts slide around each other, whereas nature's hinges (a rabbit's ear, for example) more often swing by bending flexible materials. In this marvelously surprising, witty book, Steven Vogel compares these two mechanical worlds, introduces the reader to his field of biomechanics, and explains how the nexus of physical law, size, and convenience of construction determine the designs of both people and nature. "This elegant comparison of human and biological technology will forever change the way you look at each."—Michael LaBarbera, American Scientist

Math Through the Ages: A Gentle History for Teachers and Others


William P. Berlinghoff - 2002
    Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."