Book picks similar to
Pattern Recognition and Classification: An Introduction by Geoff Dougherty
computer-science
machine-learning
machine-learning-reference
maphychines
Modern Database Management
Jeffrey A. Hoffer - 1994
Intended for professional development programs in introductory database management.
MATLAB: A Practical Introduction to Programming and Problem Solving
Stormy Attaway - 2009
It is the only book that gives a full introduction to programming in MATLAB combined with an explanation of MATLAB's powerful functions. The book differs from other texts in that it teaches programming concepts and the use of the built-in functions in MATLAB simultaneously. It presents programming concepts and MATLAB built-in functions side-by-side, giving students the ability to program efficiently and exploit the power of MATLAB to solve problems. The systematic, step-by-step approach, building on concepts throughout the book, facilitates easier learning.Starting with basic programming concepts, such as variables, assignments, input/output, selection, and loop statements, problems are introduced and solved throughout the book. The book is organized into two parts. Part I covers the programming constructs and demonstrates programming versus efficient use of built-in functions to solve problems. Part II describes the applications, including plotting, image processing, and mathematics, needed in basic problem solving. The chapters feature sections called Quick Question! as well as practice problems designed to test knowledge about the material covered. Problems are solved using both The Programming Concept and The Efficient Method, which facilitates understanding the efficient ways of using MATLAB, and also the programming concepts used in these efficient functions and operators. There are also sections on 'common pitfalls' and 'programming guidelines' that direct students towards best practice.This book is ideal for engineers learning to program and model in MATLAB, as well as undergraduates in engineering and science taking a course on MATLAB.
Mastering Emacs
Mickey Petersen - 2015
In the Mastering Emacs ebook you will learn the answers to all the concepts that take weeks, months or even years to truly learn, all in one place.“Emacs is such a hard editor to learn”But why is it so hard to learn? As it turns out, it's almost always the same handful of issues that everyone faces.If you have tried to learn Emacs you will have struggled with the same problems everyone faces, and few tutorials to see you through it.I have dedicated the first half of the book to explaining the essence of Emacs — and in doing so, how to overcome these issues:Memorizing Emacs’s keys: You will learn Emacs one key at a time, starting with the arrow keys. To feel productive in Emacs, it’s important you start on an equal footing — without too many new concepts and keys to memorize. Each chapter will introduce more keys and concepts so you can learn at your own pace. Discovering new modes and features: Emacs is a self-documenting editor, and I will teach you how to use the apropos, info, and describe system to discover new modes and features, or help you find things you forgot! Customizing Emacs: You don’t have to learn Emacs Lisp to alter a lot of Emacs’s functionality. Most changes you want to make are possible using Emacs’s Customize interface and I will show you how to use it efficiently. Understanding the terminology: Emacs is so old it predates almost every other editor and all modern user interfaces. I have an entire chapter dedicated to the unique terminology in Emacs; how it is different from other editors, and what that means to you.
Baseball Prospectus 2015
Baseball Prospectus - 2015
Baseball Prospectus 2015 brings together an elite group of analysts to provide the definitive look at the upcoming season in critical essays and commentary on the thirty teams, their managers, and more than sixty players and prospects from each team.Baseball Prospectus 2015contains critical essays on each of the thirty teams and player comments for some sixty players for each of those teams; projects each player's stats for the coming season using the groundbreaking PECOTA projection system, which has been called "perhaps the game's most accurate projection model" (Sports Illustrated). Now in its twentieth edition, this New York Times bestselling insider's guide from Baseball Prospectus, America's leading provider of statistical analysis for baseball, remains hands down the most authoritative and entertaining book of its kind.
The Cartoon Guide to the Computer
Larry Gonick - 1983
Illustrated with cartoons throughout.
The Intelligent Web: Search, Smart Algorithms, and Big Data
Gautam Shroff - 2013
These days, linger over a Web page selling lamps, and they will turn up at the advertising margins as you move around the Internet, reminding you, tempting you to make that purchase. Search engines such as Google can now look deep into the data on the Web to pull out instances of the words you are looking for. And there are pages that collect and assess information to give you a snapshot of changing political opinion. These are just basic examples of the growth of Web intelligence, as increasingly sophisticated algorithms operate on the vast and growing amount of data on the Web, sifting, selecting, comparing, aggregating, correcting; following simple but powerful rules to decide what matters. While original optimism for Artificial Intelligence declined, this new kind of machine intelligence is emerging as the Web grows ever larger and more interconnected.Gautam Shroff takes us on a journey through the computer science of search, natural language, text mining, machine learning, swarm computing, and semantic reasoning, from Watson to self-driving cars. This machine intelligence may even mimic at a basic level what happens in the brain.
Dataclysm: Who We Are (When We Think No One's Looking)
Christian Rudder - 2014
In Dataclysm, Christian Rudder uses it to show us who we truly are. For centuries, we’ve relied on polling or small-scale lab experiments to study human behavior. Today, a new approach is possible. As we live more of our lives online, researchers can finally observe us directly, in vast numbers, and without filters. Data scientists have become the new demographers. In this daring and original book, Rudder explains how Facebook "likes" can predict, with surprising accuracy, a person’s sexual orientation and even intelligence; how attractive women receive exponentially more interview requests; and why you must have haters to be hot. He charts the rise and fall of America’s most reviled word through Google Search and examines the new dynamics of collaborative rage on Twitter. He shows how people express themselves, both privately and publicly. What is the least Asian thing you can say? Do people bathe more in Vermont or New Jersey? What do black women think about Simon & Garfunkel? (Hint: they don’t think about Simon & Garfunkel.) Rudder also traces human migration over time, showing how groups of people move from certain small towns to the same big cities across the globe. And he grapples with the challenge of maintaining privacy in a world where these explorations are possible. Visually arresting and full of wit and insight, Dataclysm is a new way of seeing ourselves—a brilliant alchemy, in which math is made human and numbers become the narrative of our time.
Amazon Simple Storage Service (S3) Getting Started Guide
Amazon Web Services - 2012
This guide introduces the basic concepts of Amazon S3, the bucket and the object. It walks you through the process of using the AWS Management Console, a browser-based graphical user interface, to create a bucket and then upload, view, move, and delete an object.
Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are
Seth Stephens-Davidowitz - 2017
This staggering amount of information—unprecedented in history—can tell us a great deal about who we are—the fears, desires, and behaviors that drive us, and the conscious and unconscious decisions we make. From the profound to the mundane, we can gain astonishing knowledge about the human psyche that less than twenty years ago, seemed unfathomable.Everybody Lies offers fascinating, surprising, and sometimes laugh-out-loud insights into everything from economics to ethics to sports to race to sex, gender and more, all drawn from the world of big data. What percentage of white voters didn’t vote for Barack Obama because he’s black? Does where you go to school effect how successful you are in life? Do parents secretly favor boy children over girls? Do violent films affect the crime rate? Can you beat the stock market? How regularly do we lie about our sex lives and who’s more self-conscious about sex, men or women?Investigating these questions and a host of others, Seth Stephens-Davidowitz offers revelations that can help us understand ourselves and our lives better. Drawing on studies and experiments on how we really live and think, he demonstrates in fascinating and often funny ways the extent to which all the world is indeed a lab. With conclusions ranging from strange-but-true to thought-provoking to disturbing, he explores the power of this digital truth serum and its deeper potential—revealing biases deeply embedded within us, information we can use to change our culture, and the questions we’re afraid to ask that might be essential to our health—both emotional and physical. All of us are touched by big data everyday, and its influence is multiplying. Everybody Lies challenges us to think differently about how we see it and the world.
Artificial Intelligence: 101 Things You Must Know Today About Our Future
Lasse Rouhiainen - 2018
In fact, AI will dramatically change our entire society.You might have heard that many jobs will be replaced by automation and robots, but did you also know that at the same time a huge number of new jobs will be created by AI?This book covers many fascinating and timely topics related to artificial intelligence, including: self-driving cars, robots, chatbots, and how AI will impact the job market, business processes, and entire industries, just to name a few.This book is divided into ten chapters:Chapter I: Introduction to Artificial IntelligenceChapter II: How Artificial Intelligence Is Changing Many IndustriesChapter III: How Artificial Intelligence Is Changing Business ProcessesChapter IV: Chatbots and How They Will Change CommunicationChapter V: How Artificial Intelligence Is Changing the Job MarketChapter VI: Self-Driving Cars and How They Will Change Traffic as We Know ItChapter VII: Robots and How They Will Change Our LivesChapter VIII: Artificial Intelligence Activities of Big Technology CompaniesChapter IX: Frequently Asked Questions About Artificial Intelligence Part IChapter X: Frequently Asked Questions About Artificial Intelligence Part IITo enhance your learning experience and help make the concepts easier to understand, there are more than 85 visual presentations included throughout the book.You will learn the answers to 101 questions about artificial intelligence, and also have access to a large number of resources, ideas and tips that will help you to understand how artificial intelligence will change our lives.Who is this book for?Managers and business professionalsMarketers and influencersEntrepreneurs and startupsConsultants and coachesEducators and teachersStudents and life-long learnersAnd everyone else who is interested in our future.Are you ready to discover how artificial intelligence will impact your life This guidebook offers a multitude of tools, techniques and strategies that every business and individual can quickly apply and benefit from.
The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy
Sharon Bertsch McGrayne - 2011
To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.
The Eudaemonic Pie
Thomas A. Bass - 1985
“The result is a veritable pi
Behind Deep Blue: Building the Computer That Defeated the World Chess Champion
Feng-Hsiung Hsu - 2002
Written by the man who started the adventure, Behind Deep Blue reveals the inside story of what happened behind the scenes at the two historic Deep Blue vs. Kasparov matches. This is also the story behind the quest to create the mother of all chess machines. The book unveils how a modest student project eventually produced a multimillion dollar supercomputer, from the development of the scientific ideas through technical setbacks, rivalry in the race to develop the ultimate chess machine, and wild controversies to the final triumph over the world's greatest human player.In nontechnical, conversational prose, Feng-hsiung Hsu, the system architect of Deep Blue, tells us how he and a small team of fellow researchers forged ahead at IBM with a project they'd begun as students at Carnegie Mellon in the mid-1980s: the search for one of the oldest holy grails in artificial intelligence--a machine that could beat any human chess player in a bona fide match. Back in 1949 science had conceived the foundations of modern chess computers but not until almost fifty years later--until Deep Blue--would the quest be realized.Hsu refutes Kasparov's controversial claim that only human intervention could have allowed Deep Blue to make its decisive, "uncomputerlike" moves. In riveting detail he describes the heightening tension in this war of brains and nerves, the "smoldering fire" in Kasparov's eyes. Behind Deep Blue is not just another tale of man versus machine. This fascinating book tells us how man as genius was given an ultimate, unforgettable run for his mind, no, not by the genius of a computer, but of man as toolmaker.
The Mathematical Corporation: Where Human Ingenuity and Thinking Machines Design the Future
Joshua Sullivan - 2017
The technology is powerful but it is still a tool—one used by people to apply human ingenuity, imagination, and problem-solving skills to see trends, patterns, anomalies, and relationships in what were once inscrutable or unmanageable issues. In their years spent working with hundreds of companies, governments, and non-profit organizations, Josh Sullivan and Angela Zutavern have consulted with a wide range of leaders developing new capabilities that lead to new business models, the creation of breakthrough products and services, and potential solutions to vexing global problems. Their stories include Ford developing not just smarter cars but also smarter roads and cities; an oceanographer obtaining a holistic map of the oceans, with ramifications for both the fishing industry but for humanity at large; and health care entrepreneurs developing new products that significantly reduce heart attack fatalities.These are but a few examples of leaders tapping the power of the digital world and creatively collaborating with computers. New capabilities are developed that then give birth to new business models as leaders envision and shape the future. Businesses are reaching goals that until recently seemed difficult, if not impossible, to attain. The winnings will go to organizations that take steps to deliver "impossible strategies," and The Mathematical Corporation provides leaders with the new way to think and work in this era of data science and drive the revolution.