What Is Real?: The Unfinished Quest for the Meaning of Quantum Physics


Adam Becker - 2018
    But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's Copenhagen interpretation and dismissed questions about the reality underlying quantum physics as meaningless. A mishmash of solipsism and poor reasoning, Copenhagen endured, as Bohr's students vigorously protected his legacy, and the physics community favored practical experiments over philosophical arguments. As a result, questioning the status quo long meant professional ruin. And yet, from the 1920s to today, physicists like John Bell, David Bohm, and Hugh Everett persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and of the courageous scientists who dared to stand up for truth.

Death by Black Hole: And Other Cosmic Quandaries


Neil deGrasse Tyson - 2006
    "One of today's best popularizers of science." —Kirkus Reviews.Loyal readers of the monthly "Universe" essays in Natural History magazine have long recognized Neil deGrasse Tyson's talent for guiding them through the mysteries of the cosmos with stunning clarity and almost childlike enthusiasm. Here, Tyson compiles his favorite essays across a myriad of cosmic topics. The title essay introduces readers to the physics of black holes by explaining the gory details of what would happen to your body if you fell into one. "Holy Wars" examines the needless friction between science and religion in the context of historical conflicts. "The Search for Life in the Universe" explores astral life from the frontiers of astrobiology. And "Hollywood Nights" assails the movie industry's feeble efforts to get its night skies right. Known for his ability to blend content, accessibility, and humor, Tyson is a natural teacher who simplifies some of the most complex concepts in astrophysics while simultaneously sharing his infectious excitement about our universe.

Birth of a Theorem: A Mathematical Adventure


Cédric Villani - 2012
    Birth of a Theorem is Villani’s own account of the years leading up to the award. It invites readers inside the mind of a great mathematician as he wrestles with the most important work of his career.But you don’t have to understand nonlinear Landau damping to love Birth of a Theorem. It doesn’t simplify or overexplain; rather, it invites readers into collaboration. Villani’s diaries, emails, and musings enmesh you in the process of discovery. You join him in unproductive lulls and late-night breakthroughs. You’re privy to the dining-hall conversations at the world’s greatest research institutions. Villani shares his favorite songs, his love of manga, and the imaginative stories he tells his children. In mathematics, as in any creative work, it is the thinker’s whole life that propels discovery—and with Birth of a Theorem, Cédric Villani welcomes you into his.

The Man Who Changed Everything: The Life of James Clerk Maxwell


Basil Mahon - 2003
    Approaching science with a freshness unbound by convention or previous expectations, he produced some of the most original scientific thinking of the nineteenth century - and his discoveries went on to shape the twentieth century.

The Man Who Knew Infinity: A Life of the Genius Ramanujan


Robert Kanigel - 1991
    Hardy, in the years before World War I. Through their eyes the reader is taken on a journey through numbers theory. Ramanujan would regularly telescope 12 steps of logic into two - the effect is said to be like Dr Watson in the train of some argument by Sherlock Holmes. The language of symbols and infinitely large (and small) regions of mathematics should be rendered with clarity for the general reader.

Why Does E=mc²? (And Why Should We Care?)


Brian Cox - 2009
    Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.

Quantum: Einstein, Bohr and the Great Debate About the Nature of Reality


Manjit Kumar - 2007
    And yet for many years it was equally baffling for scientists themselves. Manjit Kumar gives a dramatic and superbly-written history of this fundamental scientific revolution, and the divisive debate at its heart.For 60 years most physicists believed that quantum theory denied the very existence of reality itself. Yet Kumar shows how the golden age of physics ignited the greatest intellectual debate of the twentieth century.Quantum sets the science in the context of the great upheavals of the modern age. In 1925 the quantum pioneers nearly all hailed from upper-middle-class academic families; most were German; and their average age was 24. But it was their irrational, romantic spirit, formed in reaction to the mechanised slaughter of the First World War that inspired their will to test science to its limits.The essential read for anyone fascinated by this complex and thrilling story and by the band of young men at its heart.

Quantum Theory Cannot Hurt You


Marcus Chown - 2005
    Together, they explain virtually everything about the world we live in. But, almost a century after their advent, most people haven't the slightest clue what either is about. Did you know that there's so much empty space inside matter that the entire human race could be squeezed into the volume of a sugar cube? Or that you grow old more quickly on the top floor of a building than on the ground floor? And did you realise that 1 percent of the static on a TV tuned between stations is a relic of the Big Bang?

Einstein: His Life and Universe


Walter Isaacson - 2007
    In this narrative, Walter Isaacson explains how his mind worked and the mysteries of the universe that he discovered.

Just Six Numbers: The Deep Forces That Shape the Universe


Martin J. Rees - 1999
    There are deep connections between stars and atoms, between the cosmos and the microworld. Just six numbers, imprinted in the "big bang," determine the essential features of our entire physical world. Moreover, cosmic evolution is astonishingly sensitive to the values of these numbers. If any one of them were "untuned," there could be no stars and no life. This realization offers a radically new perspective on our universe, our place in it, and the nature of physical laws.

Albert Einstein: And the Frontiers of Physics


Jeremy Bernstein - 1995
    They found him a dreamy child without an especially promising future. But some time in his early years he developed what he called wonder about the world. Later in life, he remembered two instances from his childhood--his fascination at age five with a compass and his introduction to the lucidity and certainty of geometry--that may have been the first signs of what was to come. From these ordinary beginnings, Einstein became one of the greatest scientific thinkers of all time. This illuminating biography describes in understandable language the experiments and revolutionary theories that flowed from Einstein's imagination and intellect--from his theory of relativity, which changed our conception of the universe and our place in it, to his search for a unified field theory that would explain all of the forces in the universe.

Billions & Billions: Thoughts on Life and Death at the Brink of the Millennium


Carl Sagan - 1997
    These luminous, entertaining essays travel both the vastness of the cosmos and the intimacy of the human mind, posing such fascinating questions as how did the universe originate and how will it end, and how can we meld science and compassion to meet the challenges of the coming century? Here, too, is a rare, private glimpse of Sagan's thoughts about love, death, and God as he struggled with fatal disease. Ever forward-looking and vibrant with the sparkle of his unquenchable curiosity, Billions & Billions is a testament to one of the great scientific minds of our day.

The God Particle: If the Universe Is the Answer, What Is the Question?


Leon M. Lederman - 1993
    The book takes us from the Greeks' earliest scientific observations through Einstein and beyond in an inspiring celebration of human curiosity. It ends with the quest for the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe. With a new preface by Lederman, The God Particle will leave you marveling at our continuing pursuit of the infinitesimal.

Black Holes & Time Warps: Einstein's Outrageous Legacy


Kip S. Thorne - 1994
    In this masterfully written and brilliantly informed work of scientific history and explanation, Dr. Thorne, the Feynman Professor of Theoretical Physics at Caltech, leads his readers through an elegant, always human, tapestry of interlocking themes, coming finally to a uniquely informed answer to the great question: what principles control our universe and why do physicists think they know the things they think they know? Stephen Hawking's A Brief History of Time has been one of the greatest best-sellers in publishing history. Anyone who struggled with that book will find here a more slowly paced but equally mind-stretching experience, with the added fascination of a rich historical and human component.

A More Perfect Heaven: How Copernicus Revolutionized the Cosmos


Dava Sobel - 2011
    Over the next two decades, Copernicus expanded his theory through hundreds of observations, while compiling in secret a book-length manuscript that tantalized mathematicians and scientists throughout Europe. For fear of ridicule, he refused to publish.In 1539, a young German mathematician, Georg Joachim Rheticus, drawn by rumors of a revolution to rival the religious upheaval of Martin Luther's Reformation, traveled to Poland to seek out Copernicus. Two years later, the Protestant youth took leave of his aging Catholic mentor and arranged to have Copernicus's manuscript published, in 1543, as De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres)-the book that forever changed humankind's place in the universe.In her elegant, compelling style, Dava Sobel chronicles, as nobody has, the conflicting personalities and extraordinary discoveries that shaped the Copernican Revolution. At the heart of the book is her play And the Sun Stood Still, imagining Rheticus's struggle to convince Copernicus to let his manuscript see the light of day. As she achieved with her bestsellers Longitude and Galileo's Daughter, Sobel expands the bounds of narration, giving us an unforgettable portrait of scientific achievement, and of the ever-present tensions between science and faith.