Scala in Depth


Joshua Suereth - 2012
    By presenting the emerging best practices and designs from the Scala community, it guides you through dozens of powerful techniques example by example.About the BookScala is a powerful JVM language that blends the functional and OO programming models. You'll have no trouble getting introductions to Scala in books or online, but it's hard to find great examples and insights from experienced practitioners. You'll find them in Scala in Depth.There's little heavy-handed theory here—just dozens of crisp, practical techniques for coding in Scala. Written for readers who know Java, Scala, or another OO language.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.What's InsideConcise, expressive, and readable code style How to integrate Scala into your existing Java projects Scala's 2.8.0 collections API How to use actors for concurrent programming Mastering the Scala type system Scala's OO features—type member inheritance, multiple inheritance, and composition Functional concepts and patterns—immutability, applicative functors, and monads========================================​==========Table of ContentsScala—a blended language The core rules Modicum of style—coding conventions Utilizing object orientation Using implicits to write expressive code The type system Using implicits and types together Using the right collection Actors Integrating Scala with Java Patterns in functional programming

Haskell Programming From First Principles


Christopher Allen - 2015
    I've spent the last couple years actively teaching Haskell online and in person. Along the way, I started keeping notes on exercises and methods of teaching specific concepts and techniques in Haskell that eventually turned into my guide for learning haskell. That experience led me to work on this book.If you are new to programming entirely, Haskell is a great first language. You may have noticed the trend of "Functional Programming in [Imperative Language]" books and tutorials and learning Haskell gets right to the heart of what functional programming is. Languages such as Java are gradually adopting functional concepts, but most such languages were not designed to be functional languages, after all. We would not encourage you to learn Haskell as an only language, but because Haskell is a pure functional language, it is a fertile environment for mastering functional programming techniques. That way of thinking and problem solving is useful, no matter what other languages you might know or learn.Haskell is not a difficult language to use. Quite the opposite. I'm now able to tackle problems that I couldn't have tackled when I was primarily a Clojure, Common Lisp, or Python user. Haskell is difficult to teach effectively.

The Basics of Digital Forensics: The Primer for Getting Started in Digital Forensics


John Sammons - 2011
    This book teaches you how to conduct examinations by explaining what digital forensics is, the methodologies used, key technical concepts and the tools needed to perform examinations. Details on digital forensics for computers, networks, cell phones, GPS, the cloud, and Internet are discussed. Readers will also learn how to collect evidence, document the scene, and recover deleted data. This is the only resource your students need to get a jump-start into digital forensics investigations.This book is organized into 11 chapters. After an introduction to the basics of digital forensics, the book proceeds with a discussion of key technical concepts. Succeeding chapters cover labs and tools; collecting evidence; Windows system artifacts; anti-forensics; Internet and email; network forensics; and mobile device forensics. The book concludes by outlining challenges and concerns associated with digital forensics. PowerPoint lecture slides are also available.This book will be a valuable resource for entry-level digital forensics professionals as well as those in complimentary fields including law enforcement, legal, and general information security.

Planning for Big Data


Edd Wilder-James - 2004
    From creating new data-driven products through to increasing operational efficiency, big data has the potential to makeyour organization both more competitive and more innovative.As this emerging field transitions from the bleeding edge to enterprise infrastructure, it's vital to understand not only the technologies involved, but the organizational and cultural demands of being data-driven.Written by O'Reilly Radar's experts on big data, this anthology describes:- The broad industry changes heralded by the big data era- What big data is, what it means to your business, and how to start solving data problems- The software that makes up the Hadoop big data stack, and the major enterprise vendors' Hadoop solutions- The landscape of NoSQL databases and their relative merits- How visualization plays an important part in data work

Java Performance


Charlie Hunt - 2010
    

Pragmatic Guide to Git


Travis Swicegood - 2010
    Git tasks displayed on two-page spreads provide all the context you need, without the extra fluff. Get up to speed on Git right now with Pragmatic Guide to Git. Task-oriented two-page spreads get you up and running with minimal fuss. Each left-hand page dives into the underlying implementation for each task. The right-hand page contains commands that focus on the task at hand, and cross references to other tasks that are related. You'll find what you need fast. Git is rapidly becoming the de-facto standard for the open source community. Its excellent merging capabilities, coupled with its speed and relative ease of use, make it an indispensable tool for any developer. New Git users will learn the basic tasks needed to work with Git every day, including working with remote repositories, dealing with branches and tags, exploring the history, and fixing problems when things go wrong. If you're already familiar with Git, this book will be your go-to reference for Git commands and best practices. You won't find a more practical approach to learning Git than Pragmatic Guide to Git.

Refactoring Databases: Evolutionary Database Design


Scott W. Ambler - 2006
    Now, for the first time, leading agile methodologist Scott Ambler and renowned consultantPramodkumar Sadalage introduce powerful refactoring techniquesspecifically designed for database systems. Ambler and Sadalagedemonstrate how small changes to table structures, data, storedprocedures, and triggers can significantly enhance virtually anydatabase design - without changing semantic

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

Professional Android 4 Application Development


Reto Meier - 2012
    If you're anexperienced developer, you can start creating robust mobile Androidapps right away with this professional guide to Android 4application development. Written by one of Google's lead Androiddeveloper advocates, this practical book walks you through a seriesof hands-on projects that illustrate the features of the AndroidSDK. That includes all the new APIs introduced in Android 3 and 4, including building for tablets, using the Action Bar, Wi-Fi Direct, NFC Beam, and more.Shows experienced developers how to create mobile applicationsfor Android smartphones and tabletsRevised and expanded to cover all the Android SDK releasesincluding Android 4.0 (Ice Cream Sandwich), including all updatedAPIs, and the latest changes to the Android platform.Explains new and enhanced features such as drag and drop, fragments, the action bar, enhanced multitouch support, newenvironmental sensor support, major improvements to the animationframework, and a range of new communications techniques includingNFC and Wi-Fi direct.Provides practical guidance on publishing and marketing yourapplications, best practices for user experience, and moreThis book helps you learn to master the design, lifecycle, andUI of an Android app through practical exercises, which you canthen use as a basis for developing your own Android apps.

CCNA - Cisco Certified Network Associate Study Guide: Exam 640-802


Todd Lammle - 2007
    Completely Revised for the New 2007 Version of the CCNA Exam (#640-802) Cisco networking authority Todd Lammle has completely updated this new edition to cover all of the exam objectives for the latest version of the CCNA exam.

Data Science with R


Garrett Grolemund - 2015
    

Akka in Action


Raymond Roestenburg - 2012
    Akka uses Actors-independently executing processes that communicate via message passing—as the foundation for fault-tolerant applications where individual actors can fail without crashing everything. Perfect for high-volume applications that need to scale rapidly, Akka is an efficient foundation for event-driven systems that want to scale elastically up and out on demand, both on multi-core processors and across server nodes.Akka in Action is a comprehensive tutorial on building message-oriented systems using Akka. The book takes a hands-on approach, where each new concept is followed by an example that shows you how it works, how to implement the code, and how to (unit) test it. You'll learn to test and deploy an actor system and scale it up and out, showing off Akka's fault tolerance. As you move along, you'll explore a message-oriented event-driven application in Akka. You'll also tackle key issues like how to model immutable messages and domain models, and apply patterns like Event Sourcing, and CQRS. The book concludes with practical advice on how to tune and customize a system built with Akka.

Fundamentals of Software Architecture: An Engineering Approach


Mark Richards - 2020
    Until now. This practical guide provides the first comprehensive overview of software architecture's many aspects. You'll examine architectural characteristics, architectural patterns, component determination, diagramming and presenting architecture, evolutionary architecture, and many other topics.Authors Neal Ford and Mark Richards help you learn through examples in a variety of popular programming languages, such as Java, C#, JavaScript, and others. You'll focus on architecture principles with examples that apply across all technology stacks.

Computer Systems: A Programmer's Perspective


Randal E. Bryant - 2002
    Often, computer science and computer engineering curricula don't provide students with a concentrated and consistent introduction to the fundamental concepts that underlie all computer systems. Traditional computer organization and logic design courses cover some of this material, but they focus largely on hardware design. They provide students with little or no understanding of how important software components operate, how application programs use systems, or how system attributes affect the performance and correctness of application programs. - A more complete view of systems - Takes a broader view of systems than traditional computer organization books, covering aspects of computer design, operating systems, compilers, and networking, provides students with the understanding of how programs run on real systems. - Systems presented from a programmers perspective - Material is presented in such a way that it has clear benefit to application programmers, students learn how to use this knowledge to improve program performance and reliability. They also become more effective in program debugging, because t

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases