Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Operating Systems: Three Easy Pieces
Remzi H. Arpaci-Dusseau - 2012
Topics are broken down into three major conceptual pieces: Virtualization, Concurrency, and Persistence. Includes all major components of modern systems including scheduling, virtual memory management, disk subsystems and I/O, file systems, and even a short introduction to distributed systems.
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
Taming Text: How to Find, Organize, and Manipulate It
Grant S. Ingersoll - 2011
This causes real problems for everyday users who need to make sense of all the information available, and for software engineers who want to make their text-based applications more useful and user-friendly. Whether building a search engine for a corporate website, automatically organizing email, or extracting important nuggets of information from the news, dealing with unstructured text can be daunting.Taming Text is a hands-on, example-driven guide to working with unstructured text in the context of real-world applications. It explores how to automatically organize text, using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization. This book gives examples illustrating each of these topics, as well as the foundations upon which they are built.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
Hands-On Programming with R: Write Your Own Functions and Simulations
Garrett Grolemund - 2014
With this book, you'll learn how to load data, assemble and disassemble data objects, navigate R's environment system, write your own functions, and use all of R's programming tools.RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You'll gain valuable programming skills and support your work as a data scientist at the same time.Work hands-on with three practical data analysis projects based on casino gamesStore, retrieve, and change data values in your computer's memoryWrite programs and simulations that outperform those written by typical R usersUse R programming tools such as if else statements, for loops, and S3 classesLearn how to write lightning-fast vectorized R codeTake advantage of R's package system and debugging toolsPractice and apply R programming concepts as you learn them
Introducing Elixir: Getting Started in Functional Programming
Simon St.Laurent - 2013
If you're new to Elixir, its functional style can seem difficult, but with help from this hands-on introduction, you'll scale the learning curve and discover how enjoyable, powerful, and fun this language can be. Elixir combines the robust functional programming of Erlang with an approach that looks more like Ruby and reaches toward metaprogramming with powerful macro features.Authors Simon St. Laurent and J. David Eisenberg show you how to write simple Elixir programs by teaching you one skill at a time. You’ll learn about pattern matching, recursion, message passing, process-oriented programming, and establishing pathways for data rather than telling it where to go. By the end of your journey, you’ll understand why Elixir is ideal for concurrency and resilience.* Get comfortable with IEx, Elixir's command line interface* Become familiar with Elixir’s basic structures by working with numbers* Discover atoms, pattern matching, and guards: the foundations of your program structure* Delve into the heart of Elixir processing with recursion, strings, lists, and higher-order functions* Create processes, send messages among them, and apply pattern matching to incoming messages* Store and manipulate structured data with Erlang Term * Storage (ETS) and the Mnesia database* Build resilient applications with the Open Telecom Platform (OTP)* Define macros with Elixir's meta-programming tools.
Artificial Intelligence: A Modern Approach
Stuart Russell - 1994
The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa
Manufacturing Processes for Engineering Materials
Serope Kalpakjian - 2007
The book carefully presents the fundamentals of materials processing along with their relevant applications, so that the reader can clearly assess the capabilities, limitations, and potentials of manufacturing processes and their competitive aspects. Using real-world examples and well-wrought graphics, this book covers a multitude of topics, including the mechanical behavior of materials; the structure and manufacturing properties of metals; surfaces, dimensional characteristics, inspection, and quality assurance; metal-casting processes including heat treatment; bulk deformation processes; sheet-metal forming processes; material removal processes; polymers, reinforced plastics, rapid prototyping and rapid tooling; metal powders, ceramics, glasses, composites, and superconductors; joining and fastening processes; microelectronic and micromechanical devices; automation; computer-integrated systems; and product design. For manufacturing engineers, metallurgists, industrial designers, material handlers, product designers, and quality assurance managers.
Bayesian Data Analysis
Andrew Gelman - 1995
Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
PHP Solutions: Dynamic Web Design Made Easy
David Powers - 2006
How easy is easy? It's not like an instant cake mix: just add water and stir. Dynamic web design is--well-- dynamic. Every website is different, so it's impossible to grab a script, paste it into a web page, and expect it to work. Building dynamic sites involves diving into the code and adju- ing it to your own requirements. If that thought makes you break out in a cold sweat, just relax for a moment. PHP is not difficult, and I've written this book very much with the n- programmer in mind. I've done so because I don't come from a computing background myself. In fact, I went to school in the days before pocket calculators were invented, never mind personal computers. As a result, I don't assume that you drank in knowledge of arrays, loops, and conditional statements with your mother's milk. Everything is explained in plain, straightforward l- guage, and I've highlighted points where things may go wrong, with advice on how to solve the problem. At the same time, if you're working with computers and websites, you're bound to have a certain level of technical knowledge and skill. So I don't talk down to you either.
Architecture Patterns with Python: Enabling Test-Driven Development, Domain-Driven Design, and Event-Driven Microservices
Harry Percival - 2020
Many Python developers are now taking an interest in high-level software architecture patterns such as hexagonal/clean architecture, event-driven architecture, and strategic patterns prescribed by domain-driven design (DDD). But translating those patterns into Python isn't always straightforward.With this practical guide, Harry Percival and Bob Gregory from MADE.com introduce proven architectural design patterns to help Python developers manage application complexity. Each pattern is illustrated with concrete examples in idiomatic Python that explain how to avoid some of the unnecessary verbosity of Java and C# syntax. You'll learn how to implement each of these patterns in a Pythonic way.Architectural design patterns include:Dependency inversion, and its links to ports and adapters (hexagonal/clean architecture)Domain-driven design's distinction between entities, value objects, and aggregatesRepository and Unit of Work patterns for persistent storageEvents, commands, and the message busCommand Query Responsibility Segregation (CQRS)Event-driven architecture and reactive microservices
Cryptography and Network Security
Behrouz A. Forouzan - 2007
In this new first edition, well-known author Behrouz Forouzan uses his accessible writing style and visual approach to simplify the difficult concepts of cryptography and network security. This edition also provides a website that includes Powerpoint files as well as instructor and students solutions manuals. Forouzan presents difficult security topics from the ground up. A gentle introduction to the fundamentals of number theory is provided in the opening chapters, paving the way for the student to move on to more complex security and cryptography topics. Difficult math concepts are organized in appendices at the end of each chapter so that students can first learn the principles, then apply the technical background. Hundreds of examples, as well as fully coded programs, round out a practical, hands-on approach which encourages students to test the material they are learning.
Machine Learning
Tom M. Mitchell - 1986
Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.