MATLAB: A Practical Introduction to Programming and Problem Solving
Stormy Attaway - 2009
It is the only book that gives a full introduction to programming in MATLAB combined with an explanation of MATLAB's powerful functions. The book differs from other texts in that it teaches programming concepts and the use of the built-in functions in MATLAB simultaneously. It presents programming concepts and MATLAB built-in functions side-by-side, giving students the ability to program efficiently and exploit the power of MATLAB to solve problems. The systematic, step-by-step approach, building on concepts throughout the book, facilitates easier learning.Starting with basic programming concepts, such as variables, assignments, input/output, selection, and loop statements, problems are introduced and solved throughout the book. The book is organized into two parts. Part I covers the programming constructs and demonstrates programming versus efficient use of built-in functions to solve problems. Part II describes the applications, including plotting, image processing, and mathematics, needed in basic problem solving. The chapters feature sections called Quick Question! as well as practice problems designed to test knowledge about the material covered. Problems are solved using both The Programming Concept and The Efficient Method, which facilitates understanding the efficient ways of using MATLAB, and also the programming concepts used in these efficient functions and operators. There are also sections on 'common pitfalls' and 'programming guidelines' that direct students towards best practice.This book is ideal for engineers learning to program and model in MATLAB, as well as undergraduates in engineering and science taking a course on MATLAB.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Data Mining: Practical Machine Learning Tools and Techniques
Ian H. Witten - 1999
This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915 0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)
Engineering a Compiler
Keith D. Cooper - 2003
No longer is execution speed the sole criterion for judging compiled code. Today, code might be judged on how small it is, how much power it consumes, how well it compresses, or how many page faults it generates. In this evolving environment, the task of building a successful compiler relies upon the compiler writer's ability to balance and blend algorithms, engineering insights, and careful planning. Today's compiler writer must choose a path through a design space that is filled with diverse alternatives, each with distinct costs, advantages, and complexities.Engineering a Compiler explores this design space by presenting some of the ways these problems have been solved, and the constraints that made each of those solutions attractive. By understanding the parameters of the problem and their impact on compiler design, the authors hope to convey both the depth of the problems and the breadth of possible solutions. Their goal is to cover a broad enough selection of material to show readers that real tradeoffs exist, and that the impact of those choices can be both subtle and far-reaching.Authors Keith Cooper and Linda Torczon convey both the art and the science of compiler construction and show best practice algorithms for the major passes of a compiler. Their text re-balances the curriculum for an introductory course in compiler construction to reflect the issues that arise in current practice.
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Introduction to Computer Theory
Daniel I.A. Cohen - 1986
Covers all the topics needed by computer scientists with a sometimes humorous approach that reviewers found refreshing. The goal of the book is to provide a firm understanding of the principles and the big picture of where computer theory fits into the field.
Grokking Deep Learning
Andrew W. Trask - 2017
Loosely based on neuron behavior inside of human brains, these systems are rapidly catching up with the intelligence of their human creators, defeating the world champion Go player, achieving superhuman performance on video games, driving cars, translating languages, and sometimes even helping law enforcement fight crime. Deep Learning is a revolution that is changing every industry across the globe.Grokking Deep Learning is the perfect place to begin your deep learning journey. Rather than just learn the “black box” API of some library or framework, you will actually understand how to build these algorithms completely from scratch. You will understand how Deep Learning is able to learn at levels greater than humans. You will be able to understand the “brain” behind state-of-the-art Artificial Intelligence. Furthermore, unlike other courses that assume advanced knowledge of Calculus and leverage complex mathematical notation, if you’re a Python hacker who passed high-school algebra, you’re ready to go. And at the end, you’ll even build an A.I. that will learn to defeat you in a classic Atari game.
PYTHON: PROGRAMMING: A BEGINNER’S GUIDE TO LEARN PYTHON IN 7 DAYS
Ramsey Hamilton - 2016
Python is a beautiful computer language. It is simple, and it is intuitive. Python is used by a sorts of people – data scientists use it for much of their number crunching and analytics; security testers use it for testing out security and IT attacks; it is used to develop high-quality web applications and many of the large applications that you use on the internet are also written in Python, including YouTube, DropBox, and Instagram. Are you interested in learning Python? Then settle in and learn the basics in just 7 days - enough for you to be comfortable in moving on to the next level without any trouble.Are you interested in learning Python? Then settle in and learn the basics in just 7 days - enough for you to be comfortable in moving on to the next level without any trouble. In this book you'll learn: Setting Up Your Environment Let’s Get Programming Variables and Programs in Files Loops, Loops and More Loops Functions Dictionaries, Lists, and Tuples The “for” Loop Classes Modules File Input/Output Error Handling and much more! Now it's time for you to start your journey into Python programming! Click on the Buy Now button above and get started today!
Microelectronics
Jacob Millman - 1979
With pedagogical use of second color, it covers devices in one place so that circuit characteristics are developed early.
Reversing: Secrets of Reverse Engineering
Eldad Eilam - 2005
The book is broken into two parts, the first deals with security-related reverse engineering and the second explores the more practical aspects of reverse engineering. In addition, the author explains how to reverse engineer a third-party software library to improve interfacing and how to reverse engineer a competitor's software to build a better product. * The first popular book to show how software reverse engineering can help defend against security threats, speed up development, and unlock the secrets of competitive products * Helps developers plug security holes by demonstrating how hackers exploit reverse engineering techniques to crack copy-protection schemes and identify software targets for viruses and other malware * Offers a primer on advanced reverse-engineering, delving into disassembly-code-level reverse engineering-and explaining how to decipher assembly language
Software Architecture in Practice
Len Bass - 2003
Distinct from the details of implementation, algorithm, and data representation, an architecture holds the key to achieving system quality, is a reusable asset that can be applied to subsequent systems, and is crucial to a software organization's business strategy.Drawing on their own extensive experience, the authors cover the essential technical topics for designing, specifying, and validating a system. They also emphasize the importance of the business context in which large systems are designed. Their aim is to present software architecture in a real-world setting, reflecting both the opportunities and constraints that companies encounter. To that end, case studies that describe successful architectures illustrate key points of both technical and organizational discussions.Topics new to this edition include:
Architecture design and analysis, including the Architecture Tradeoff Analysis Method (ATAM)
Capturing quality requirements and achieving them through quality scenarios and tactics
Using architecture reconstruction to recover undocumented architectures
Documenting architectures using the Unified Modeling Language (UML)
New case studies, including Web-based examples and a wireless Enterprise JavaBeans (EJB) system designed to support wearable computers
The financial aspects of architectures, including use of the Cost Benefit Analysis Method (CBAM) to make decisions
If you design, develop, or manage the building of large software systems (or plan to do so), or if you are interested in acquiring such systems for your corporation or government agency, use Software Architecture in Practice, Second Edition, to get up to speed on the current state of software architecture.
Starting Out with Java: From Control Structures Through Objects
Tony Gaddis - 2009
If you wouldlike to purchase both the physical text and MyProgrammingLab search for ISBN-10: 0132989999/ISBN-13: 9780132989992. That packageincludes ISBN-10: 0132855836/ISBN-13: 9780132855839 and ISBN-10: 0132891557/ISBN-13: 9780132891554. MyProgrammingLab should only be purchased when required by an instructor. In "Starting Out with Java: From Control Structures through Objects", Gaddis covers procedural programming control structures and methods before introducing object-oriented programming. As with all Gaddis texts, clear and easy-to-read code listings, concise and practical real-world examples, and an abundance of exercises appear in every chapter. "
Programming Perl
Tom Christiansen - 1991
The first edition of this book, Programming Perl, hit the shelves in 1990, and was quickly adopted as the undisputed bible of the language. Since then, Perl has grown with the times, and so has this book.Programming Perl is not just a book about Perl. It is also a unique introduction to the language and its culture, as one might expect only from its authors. Larry Wall is the inventor of Perl, and provides a unique perspective on the evolution of Perl and its future direction. Tom Christiansen was one of the first champions of the language, and lives and breathes the complexities of Perl internals as few other mortals do. Jon Orwant is the editor of The Perl Journal, which has brought together the Perl community as a common forum for new developments in Perl.Any Perl book can show the syntax of Perl's functions, but only this one is a comprehensive guide to all the nooks and crannies of the language. Any Perl book can explain typeglobs, pseudohashes, and closures, but only this one shows how they really work. Any Perl book can say that my is faster than local, but only this one explains why. Any Perl book can have a title, but only this book is affectionately known by all Perl programmers as "The Camel."This third edition of Programming Perl has been expanded to cover version 5.6 of this maturing language. New topics include threading, the compiler, Unicode, and other new features that have been added since the previous edition.
Elements of Information Theory
Thomas M. Cover - 1991
Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
Python Programming: Using Problem Solving Approach
Reema Thareja - 2019
It is suited for undergraduate degree students of computer science engineering, IT as well as computer applications. This book will enable students to apply the Python programming concepts in solving real-world problems.The book begins with an introduction to computers, problem solving approaches, programming languages, object oriented programming, and Python programming. Separate chapters dealing with the important constructs of Python language such as control statements, functions, strings, files, data structures, classes and objects, inheritance, operator overloading, and exceptions are provided in the book.